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Abstract

This doctoral thesis presents a comprehensive study of inverse problems in image
restoration, focusing on recovering high-quality images from a variety of degraded inputs.
It introduces five novel image reconstruction methods that collectively bridge classical
model-based algorithms and modern deep learning approaches. First, an iterative Wiener
filtering and thresholding technique (IWFT) is developed to perform image deblurring
while suppressing ringing artifacts, addressing limitations of traditional deconvolutional
methods. Second, a deep unrolled neural network (D3Net) is designed to jointly solve
demosaicking, deblurring, and deringing in a unified optimization-inspired framework,
blending the interpretability of classical model-based methods with the flexibility of
learned models. Third, a dual-view self-supervised approach (Dual-Cycle) leverages
cycle-consistent generative modeling to fuse two orthogonal light-sheet microscopy
images, producing high-resolution 3D reconstructions without the need for any paired
training data. The fourth contribution pioneers the use of implicit neural representations
for image restoration: a neural field-based demosaicking method (NeRD) that represents
images as continuous functions and achieves reconstruction quality on par with state-
of-the-art supervised methods. Finally, a self-adaptive implicit framework (INRID)
is proposed for image demosaicking, which optimizes a coordinate-based network per
image and robustly handles additional degradations such as blur and noise without
requiring retraining.





Abstrakt

Tato disertační práce představuje ucelenou studii inverzních problémů ve zpracování
obrazu se zaměřením na rekonstrukci vysoce kvalitních obrazů z různě degradovaných
vstupů. Přináší pět nových metod rekonstrukce obrazu, jež dohromady propojují kla-
sické algoritmy s moderními technikami hlubokého učení. Nejprve je vyvinuta metoda
iterativní Wienerovy filtrace a prahování (IWFT) k odstranění rozmazání obrazu, která
zároveň potlačuje prstencové artefakty kolem hran a překonává omezení tradičních metod
dekonvoluce. Dále je navržena neuronová síť D3Net, která v jednotném frameworku
společně řeší problém demosaickingu, dekonvoluce a potlačení prstencových artefaktů,
přičemž kombinuje interpretovatelnost klasických postupů s flexibilitou naučených mod-
elů pomocí techniky “deep unrolling". Třetím přístupem je metoda Dual-Cycle určená
pro rekonstrukci dat ve fluorescenční mikroskopii. Využívá cyklicky konzistentní genera-
tivní model k fúzi dvou ortogonálních snímků a dosahuje vysoce kvalitní 3D rekonstrukce
bez potřeby párových trénovacích dat. Čtvrtým přínosem je průkopnické využití implic-
itních neuronových reprezentací pro demosaicking. Metoda NeRD reprezentuje obraz
jako spojitou funkci definovanou neuronovou sítí a dosahuje kvality rekonstrukce srov-
natelné se současnými pokročilými metodami. Nakonec je představena samoadaptivní
metoda demosaickingu nazvaná INRID, která pro každý jednotlivý snímek optimalizuje
vlastní implicitní neuronovou reprezentaci a dokáže robustně zvládat degradace, jako je
rozostření a šum, aniž by vyžadovala další přetrénování.
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Part I

I N T R O D U C T I O N





1Inverse Problems in Image Restoration

Inverse problems, in general, involve recovering complete information from incom-
plete or noisy data, much like deducing the “reality” from the shadows in Plato’s

allegory of the cave [1]. In image restoration [2], inverse problems arise when we try to
reconstruct a high-quality image from degraded or partial measurements. While this
task may seem like an abstract mathematical challenge [3, 4], it is central to a wide
range of real-world imaging applications, including digital photography, astronomical
imaging, remote sensing, industrial inspection, and biomedical imaging (see [5–8] for an
in-depth overview).

Figure 1.1 illustrates the forward and inverse imaging processes in modalities such
as digital photography, although the fundamental principles of inverse problems remain
consistent across all other imaging techniques. In a forward model, the underlying scene
u is mapped through a physical or computational degradation operator D (representing
the imaging system, e.g., a digital camera), to produce measurements g (often corrupted
by noise n), according to

g = D(u) + n. (1.1)

By contrast, an inverse model R seeks to restore the original u from the observed
g, where the estimate is given by û = R(g). This reversal of the forward process tends
to be mathematically and computationally challenging, as many potential images u can
yield the same input data, and measurement noise n further complicates the recovery
process. Such problems, where a unique and stable solution may not exist, are commonly
referred to as ill-posed [9].

Figure 1.1: Schematic illustration of forward and inverse imaging problems in digital photography.
In the forward problem (first arrow), a known object u is transformed into measured data g via
an imaging system D, subject to degradation such as blur and noise n. In the inverse problem
(second arrow), the goal is to recover the estimate û from g. The task is typically ill-posed and
very sensitive to measurement quality.
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1.1 real-world examples of inverse problems

Real-world examples clearly illustrate the importance of inverse problems.
In image restoration, problems are typically categorized as single-channel or

multi-channel. To exemplify these paradigms, we focus on single-channel digital pho-
tography [10–14] and multi-channel light-sheet fluorescence microscopy (LSFM) [15–17].
Both cases also reflect the central themes of this thesis.

Digital Photography

When capturing an image with a digital camera, one might assume that the sensor
records a full-color, sharp picture. In reality, almost all cameras use a single sensor with
a color filter array (CFA), such as the Bayer pattern, where each pixel records only one
of the three RGB colors. Moreover, physical limitations such as out-of-focus blur, motion
blur, lens imperfections and sensor noise further degrade the captured data. As a result,
the camera must not only reconstruct the missing colors (demosaicking [18–20]) but also
correct for the blur (deblurring [21–23]). This leads to a joint demosaicking-deblurring
problem that may also incorporate denoising [24–26] (see Figure 1.2).

Figure 1.2: Illustration of the joint demosaicking and deblurring inverse problem in digital
photography. A real-world scene, mathematically represented as an image u, is formed on the
camera sensor by the lens, which may introduce optical blur, resulting in a blurred image Hu.
Simultaneously, a color filter array imposes color sampling, producing the blurred raw data g.
The inverse problem then reconstructs the image û, restoring both colors and details.

The general forward model (1.1) with the degradation operator D is now expressed
as the matrix composition D(u) = S Hu, where u is in vectorized form, H denotes a
blur operator, typically modeled as a convolution with a known point-spread function
(PSF), and S represents the sampling operator corresponding to the given CFA. With
this decomposition, the observation model becomes

g = S H u + n . (1.2)

Poor reconstruction u from measurement g can lead to visible artifacts such as color
Moiré, zippering, or ringing, while effective reconstruction preserves fine details and
faithfully reproduces the original scene. In everyday photography, therefore, addressing
the inverse problem of joint demosaicking-deblurring is indispensable for achieving
images of high perceptual quality. The challenges associated with this problem are
investigated in Chapter 5 and further detailed in Part II of this thesis.
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Fluorescence Microscopy

Beyond consumer photography, inverse problems are crucial in advanced scientific
imaging, particularly in fluorescence microscopy. LSFM is a powerful technique for
capturing 3D images of biological specimens with minimal photodamage. Instead of
illuminating the entire sample, LSFM selectively excites the fluorophores in a thin
optical plane, reducing out-of-focus blur and allowing for extended imaging of living
specimens. However, because each view is captured plane by plane, the resulting image
stack may suffer from incomplete structural information and anisotropic resolution
(with lower detail along the optical axis). To mitigate these issues, a dual-view Selective
Plane Illumination Microscope (diSPIM) [27] captures images from two perpendicular
directions, each providing complementary information (see Figure 1.3).

In this case, the two degradation processes are modeled as

g1 = A1H1u + n1, g2 = A2H2u + n2, (1.3)

where Hi represents optical blur for view i and Ai is the affine transform (rotation
and misalignment) for each camera.

The challenge becomes merging these two incomplete and noisy 3D measurements,
g1 and g2, into a single high-quality 3D reconstruction u. This is a typical example of
two joint inverse problems, image fusion [28, 29] and super-resolution [30, 31], where
multiple low resolution inputs are combined to recover a high-resolution image. A more
in-depth exploration of this problem is presented in Section 5.3.

Figure 1.3: Illustration of the inverse problem in dual-view light-sheet fluorescence microscopy
(diSPIM). A 3D biological sample, represented as u, is imaged from two perpendicular views,
producing 3D measurements g1 and g2 with anisotropic resolution and noise. The inverse
problem fuses these views to reconstruct û, enhancing structural details and isotropy.

From digital photography to cutting-edge biological imaging, this illustrates the
central theme of this thesis: imaging systems rarely capture perfect data, and restoring
a high-quality image requires solving an inverse problem.
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1.2 classical model-based approaches

C lassical restoration methods include techniques that rely on mathematical models
of the imaging processes and incorporate prior knowledge through handcrafted

regularizers. In this context, a regularizer is a function designed to impose constraints
on the solution, promoting features like smooth transitions or sharp edges, which are
characteristic of natural images. Figure 1.4 demonstrates the effect of regularization.

For some inverse problems, a solution can be found in an explicit form. For example,
when the only degradation is blur combined with additive noise, the Wiener filter is a
well-established method that provides a closed-form solution in the frequency (Fourier)
domain [32]. Although elegant, the Wiener filter often produces ringing artifacts, which
are a manifestation of the Gibbs phenomenon (see [33]). As shown in Figure 1.4b, these
artifacts are most prominent near edges. In Chapter 5 we have proposed an effective
solution for suppressing these artifacts.

(a) Blurred (b) Wiener (c) Regularized (d) Ground-truth

Figure 1.4: Deblurring results using classical model-based approaches. (a) The blurred image;
(b) the output from a Wiener filter – an optimal linear filter that can produce ringing artifacts
near strong edges; (c) a regularized solution [11] that imposes constraints to suppress these
artifacts while preserving natural features such as smooth transitions and sharp edges; and (d)
the ground truth.

Variational Approach and Explicit Regularization

Rather than seeking a closed-form solution, classical model-based approaches reformulate
the inverse problem as an optimization task that balances consistency to the observed
data with prior assumptions about the underlying image. The goal is to find an estimate
û that minimizes

û = arg min
u

{L(u) + λΦ(u)} , (1.4)

where the first term L(u) measures the fidelity of the estimated u to the image for-
mation model (1.1) and Φ(u) encodes explicit regularization (e.g., smoothness, sparsity,
or edge preservation). The parameter λ controls the trade-off between these components.
When we assume the model error follows a Gaussian distribution, the data term becomes
the ℓ2 norm: L(u) = 1

2∥D(u)− g∥2
2. When assuming the model error follows a Laplace
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distribution, the ℓ1 norm is used. A variety of regularization strategies have been pro-
posed, such as Total Variation (TV) [34], wavelet-domain sparsity [35], and non-local
self-similarity. For instance, the Non-Local Total Variation [36] integrates self-similarity
into the regularization term, while effectively capturing long-range dependencies.

A classical example of early regularization methods is Tikhonov regularization [9],
which employs a quadratic penalty Φ(u) = ∥u∥2

2. Although elementary, it often serves
as a starting point for variational methods in inverse problems. In this formulation, the
optimization problem becomes

û = arg min
u

{︃1
2∥D(u) − g∥2

2 + λ∥u∥2
2

}︃
. (1.5)

When considering a linear degradation operator in matrix form, D(u) = D u, the
formulation reduces to classical ridge regression [37]. Differentiating with respect to u

and setting the gradient to zero leads to the normal equations:

DT (D u − g) + 2λ u = 0 =⇒ (DT D + 2λI)u = DT g. (1.6)

Assuming (DT D + 2λI) is invertible, we arrive at a closed-form solution:

û = R(g) = (DT D + 2λI)−1DT g. (1.7)

This explicit solution is especially attractive for problems such as denoising (with D = I)
or when the degradation operator is well-conditioned. However, for applications like
deblurring (D = H) or joint demosaicking and deblurring (D = SH), where D is often
ill-conditioned or non-invertible, direct inversion is problematic. This issue persists even
in a regularized framework, as a small λ leads to instability and noise amplification,
while a large λ ensures stability but over-smooths the result, making it closely resemble
the degraded input.

Iterative Optimization Techniques

In practice, solving the general variational formulation of inverse problems (1.4) often
requires iterative numerical methods. Early methods employed gradient descent or
Gauss-Seidel iterations [38, 39]; however, more advanced algorithms have been developed
to handle the non-smooth optimization problems. Notably, the Iterative Shrinkage-
Thresholding Algorithm (ISTA) [40] and its accelerated variant FISTA [41] leverage
proximal operators to efficiently handle ℓ1-regularized terms.

For example, TV regularization replaces the quadratic penalty with the ℓ1-norm of
the image gradient ∇u, thereby promoting piecewise-smooth solutions while preserving
edges:

û = arg min
u

{︃1
2∥D(u) − g∥2

2 + λ∥∇u∥1

}︃
. (1.8)

Very popular choice for solving such non-smooth convex problems is the Alternating
Direction Method of Multipliers (ADMM) [42] due to its ability to decouple the data
fidelity and regularization terms.
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By introducing an auxiliary variable z, one can rewrite the minimization problem as

min
u,z

{︃1
2∥D(u) − g∥2

2 + λ∥∇z∥1

}︃
subject to u = z, (1.9)

and then solve the resulting augmented Lagrangian

Lρ(u, z, v) =
1
2∥D(u) − g∥2

2 + λ∥∇z∥1 +
ρ

2∥u − z + v∥2
2 − ρ

2∥v∥2
2, (1.10)

iteratively. Here v is the scaled dual variable and ρ > 0 is a penalty parameter.
The ADMM algorithm proceeds by updating the variables in an alternating fashion.

Specifically, at iteration k, the updates are as follows:

1. u-update:

uk+1 = arg min
u

{︃1
2∥D(u) − g∥2

2 +
ρ

2∥u − zk + vk∥2
2

}︃
. (1.11)

2. z-update:

zk+1 = arg min
z

{︃
λ∥∇z∥1 +

ρ

2∥uk+1 − z + vk∥2
2

}︃
. (1.12)

3. Dual variable update:

vk+1 = vk + uk+1 − zk+1. (1.13)

Here, the whole iterative algorithm functions as the reconstruction operator R,
progressively refining the estimate of û.

In the context of digital photography, applying ADMM to solve the inverse prob-
lem (1.2) involves a u-update step that minimizes a quadratic objective, accounting
for both the blurring introduced by the operator H and the subsampling from the
operator S. Leveraging the convolutional structure of H, one can use fast Fourier
transform (FFT), while the sparse nature of S is efficiently handled with iterative solvers
like conjugate gradients [39]. Meanwhile, the z-update is addressed via an appropriate
proximal operator, such as soft-thresholding for an ℓ1-based regularizer. This decoupling
in the ADMM framework enables effective reconstruction for joint demosaicking and
deblurring, even in the presence of noise and other ill-conditioning effects.

Similarly, the primal-dual method of Chambolle and Pock [43] offers an efficient
framework for handling non-smooth convex objectives by updating the primal and dual
variables simultaneously.

Although classical model-based methods offer clear interpretability and, in some cases,
closed-form solutions, they often struggle with the ill-posedness of inverse problems and
the limitations of handcrafted priors. These challenges, along with the computational
demands of iterative solvers, have spurred interest in alternative approaches. This
naturally leads us to consider data-driven deep learning methods [6, 7], which learn the
inverse mapping or the prior directly from data.
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1.3 data-driven deep learning approaches

Learning-based reconstruction methods adopt a fundamentally different paradigm
from traditional, model-based optimization strategies. Recall that classical

approaches explicitly design a reconstruction operator

R : g → u, (1.14)

which inverts the forward degradation process (1.1) to recover the underlying image u

from its noisy or incomplete measurement g.
In contrast, supervised deep learning methods replace this manually designed operator

with a data-driven learning mechanism

L : {(g(i), u(i))}N
i=1 → Rθ. (1.15)

Here, a training set comprising N paired examples, {(g(i), u(i))}N
i=1, is used to learn

an inverse operator Rθ, where θ represents the trainable parameters. In practice,
this operator is implemented as a deep neural network N θ, and once trained, the
reconstructed image is obtained by

û = N θ̂(g). (1.16)

During training, algorithms such as stochastic gradient descent (SGD) [45] are
employed to minimize a loss function, typically the mean squared error (MSE), across
the training samples:

θ̂ = arg min
θ

N∑︂
i=1

∥N θ(g
(i)) − u(i)∥2

2. (1.17)

Figure 1.5: An illustration of SRCNN [44], one of the earliest deep learning CNNs that replaced
traditional image restoration methods. Rather than explicitly defining an inverse operator,
SRCNN learns it from low-resolution (LR) and high-resolution (HR) image pairs by minimizing
a pixel-wise loss (e.g., mean squared error). The network has three stages: (1) a convolutional
layer that extracts patch-based features from the interpolated LR input, (2) a layer that maps
these features into a higher-dimensional space, and (3) a final layer that reconstructs the
super-resolved (SR) image by combining the mapped features. SRCNN leverages large datasets
to learn complex implicit priors, achieving high-quality restoration in a single forward pass. It
outperforms many classical methods based on handcrafted priors and iterative optimization.
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By learning the inverse mapping directly from data, deep learning approaches can
implicitly capture complex image priors and degradation models that are difficult to
characterize analytically. As a result, these methods often outperform traditional
model-based techniques, achieving significant advancements in inverse problems such as
denoising, deblurring, and super-resolution [46–48].

Convolutional Neural Networks

Convolutional neural networks (CNNs) [49] have long served as the backbone of deep im-
age restoration. Early successes, such as the Super-Resolution CNN (SRCNN) proposed
by Dong et al. [44], demonstrated that even a modest three-layer CNN (Figure 1.5)
could learn to upsample low-resolution images, outperforming then state-of-the-art
sparse-coding methods. This breakthrough paved the way for deeper architectures;
for example, Very Deep Super-Resolution (VDSR) [50] leveraged a 20-layer network
with residual learning (ResNet) [51] to further enhance super-resolution performance.
DnCNN [52] employed residual CNNs to achieve superior denoising compared to classical
filtering or advanced model-based approaches such as BM3D [24]. We used CNNs in
Sections 5.2-5.4 as core building blocks to tackle joint demosaicking-deblurring problem
and fluorescence imaging restoration.

A key advantage of CNN-based approaches is their computational efficiency. Once
trained, restoration is accomplished in a single forward pass, unlike the iterative solvers
commonly used in classical methods. Moreover, CNNs, which incorporate activation
functions, inherently act as nonlinear operators that adapt to input features, enabling
them to handle structured noise and artifacts that are challenging to model analytically.
This efficiency, however, comes at the expense of requiring large, representative training
datasets and a careful tuning to avoid overfitting. In practice, techniques such as
data augmentation, early stopping, and weight regularization are employed to enhance
generalization [53].

Vision Transformers and Generative Networks

More recently, attention-based models have emerged as a powerful alternative to CNNs.
Vision Transformers (ViTs) [54] utilize self-attention mechanisms [55] to capture long-
range dependencies that are challenging for convolutional filters with limited receptive
fields. Models such as the Image Processing Transformer (IPT) [56] and SwinIR [57]
have demonstrated state-of-the-art performance in a variety of inverse problems by
leveraging global context.

Deep learning models for image restoration are often optimized using pixel-wise losses
(e.g., MSE), which can achieve high peak signal-to-noise ratio (PSNR) [32] but tend to
produce overly smooth images that miss fine textures and details. This limitation has
motivated the exploration of perceptual losses like Structural Similarity Index Measure
(SSIM) [58] or Learned Perceptual Image Patch Similarity (LPIPS) [59] and, ultimately,
adversarial training.

Generative adversarial networks (GANs), introduced by Goodfellow et al. [60],
have become a major milestone in the evolution of deep image restoration. In the
GAN framework, two neural networks, a generator N G and a discriminator N D, are
trained simultaneously in an adversarial setting: while N G strives to produce restored
images that are indistinguishable from clean images, N D learns to differentiate between
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genuine and generated outputs. This adversarial interplay encourages the generator to
produce images with high perceptual quality, complementing the fidelity term (e.g., L2)
in the loss function. For instance, SRGAN [61] demonstrated that incorporating an
adversarial loss into the training process yields super-resolved images with significantly
enhanced sharpness and fine details compared to those generated by models optimized
solely with MSE. An illustration of a conditional GAN framework for super-resolution
is shown in Figure 1.6. Similarly, DeblurGAN [62] employed a conditional GAN to map
blurry inputs to sharp outputs, effectively harnessing the discriminator as a learned
implicit regularizer.

Despite their success, GANs can be challenging to train, motivating researchers to
explore alternative generative paradigms such as diffusion models, which offer greater
stability and improved image fidelity (see Section 2.1).

Figure 1.6: An illustration of a conditional GAN framework for image super-resolution. The
generator N G receives a low-resolution (LR) input and produces a super-resolved (SR) output,
while a pixel-wise (e.g., L2) loss ensures fidelity to the ground-truth high-resolution (HR) image.
Concurrently, the discriminator N D distinguishes between real HR images and generated outputs,
guiding the generator to synthesize sharper, more realistic details. By placing the generator
and discriminator in a competitive setting, adversarial training encourages the production of
highly realistic outputs that are difficult to achieve with purely pixel-wise objectives. Although
illustrated here for super-resolution, the same principle can be applied to other inverse problems
such as deblurring or denoising.

Self-supervised Learning

Generative frameworks provide substantial benefits in scenarios where aligned training
image pairs are missing. For instance, Cycle-Consistent Generative Adversarial Network
(CycleGAN) [63], as depicted in Figure 1.7, introduces a cycle-consistency loss that
facilitates the learning of mappings between degraded and clean image domains using
unpaired data. This approach is particularly valuable in real-world restoration tasks,
such as in computed tomography or fluorescence microscopy [64, 65], where acquiring
perfectly aligned ground-truth images is often impractical or even infeasible.
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Figure 1.7: A schematic illustration of a cycle-consistent generative adversarial frame-
work (CycleGAN) [63], which enables learning mappings between a “measurement” domain
(e.g., blurred) and a “reconstruction” domain using unpaired data. Each domain has its own
generator-discriminator pair, commonly a U-Net [66] generator and a PatchGAN [67] discrimina-
tor to assess local realism. A cycle-consistency loss (e.g., L2) enforces that an image translated
from one domain to the other and back remains close to its original form. This approach is par-
ticularly advantageous in real-world image restoration in computed tomography or fluorescence
microscopy [64, 65], where perfectly aligned ground-truth data are unavailable. By leveraging
adversarial training and cycle-consistency, the model can capture complex transformations and
produce perceptually convincing outputs.

Moreover, when ground-truth data is completely unavailable, CycleGAN can operate
in a fully self-supervised mode by relying on internal consistency signals derived directly
from the measurement data. For instance, consider the diSPIM problem defined in
Equation (1.3). In Section 5.3, an approach is presented in which a U-net generator [66]
produces a 3D reconstruction that is then degraded to mimic the measurement process,
ensuring consistency with the acquired data. A PatchGAN-based discriminator [67]
further reinforces uniform detail by mapping high-resolution lateral details onto the
axial view. This cycle consistency creates an intrinsic self-supervisory signal, enabling
the recovery of fine details without the need of ground-truth data.

Alternative self-supervised paradigms have emerged that eliminate the need for
external training datasets. One seminal example is the deep image prior (DIP) approach
proposed by Ulyanov et al. [68]. DIP is based on the observation that the architecture
of a randomly initialized CNN can serve as an effective image prior, as illustrated in
Figure 1.8. In this approach, a network N θ is fitted to a single degraded image g by
minimizing the reconstruction loss:

min
θ

∥D(N θ(n)) − g∥2
2, (1.18)

where D denotes the degradation operator and n is a fixed random input (e.g., uniform
noise). By optimizing this loss, the network recovers a clean estimate û = N θ(n) that
explains the observed data g. A crucial aspect of DIP is that the network’s architectural
bias acts as an implicit regularization, favoring natural image statistics and thereby
preventing overfitting to noise when early stopping is applied. SelfDeblur [69] extends
this concept to blind deblurring by jointly optimizing for both the latent sharp image and
the unknown blur kernel (PSF), thereby leveraging the network’s inherent architectural
bias as an implicit regularizer to enforce natural image statistics. In Section 5.3, we
combine DIP with CycleGAN to deblur 3D fluorescence microscopy images.
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Figure 1.8: Illustration of the deep image prior (DIP) concept [68], where a randomly initialized
network receives random noise as input and is optimized to reconstruct a single degraded
measurement g. Unlike traditional supervised approaches, DIP does not require external
training data; instead, it exploits the inherent biases of the CNN architecture as an implicit
prior for natural images. By merely fitting the network to the observed data, DIP provides
high-quality restorations in various inverse problems (e.g., super-resolution in the top row,
inpainting in the bottom row). This self-supervised paradigm has been adapted to tasks such as
blind deblurring [69] and combined with adversarial frameworks [17], demonstrating its flexibility
and effectiveness in image restoration.

Similarly to DIP, implicit neural representations [70], explained in Section 2.2,
also leverage the inherent biases of network architectures as priors. Their built-in
regularization restricts the solution space to natural, smooth functions, much like the
effect seen in DIP, thereby helping to prevent overfitting to noise.

Other self-supervised methods like Noise2Noise [71] have demonstrated that denoising
networks can be trained solely on pairs of independently corrupted images. Under the
assumption of zero-mean noise, the optimal mapping learned from noisy inputs to noisy
targets converges to the mapping from noisy inputs to the clean image. Extensions such
as Noise2Void [72] and Noise2Self [73] further enable effective training from a single
noisy image by employing masking strategies, thus eliminating the need for paired data
altogether.

While data-driven deep learning methods have revolutionized image restoration by
learning complex inverse mappings directly from data, they are not without limitations.
Supervised approaches typically rely on large training datasets and face interpretability
challenges, as their internal mechanisms can be difficult to analyze and explain. Similarly,
self-supervised techniques, although they eliminate the need for ground-truth data, can
be computationally intensive and time-consuming, since they often require optimizing
the network separately for each new image, and they too present interpretability issues.
To address these challenges, hybrid and model-based learning strategies have been
developed that incorporate explicit forward models with flexible learned priors, thereby
enhancing both robustness and efficiency.
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1.4 hybrid and model-based learning approaches

Hybrid (or physics-informed) methods in image restoration build upon the clas-
sical framework detailed in Section 1.2. In the traditional approach, one

formulates the problem as the optimization task (1.4), where the data fidelity term
ensures consistency with the observed measurements and the regularization term Φ(u)

incorporates prior knowledge about the image (e.g., smoothness or sparsity). Hybrid
approaches [74–76] enhance these classical models by integrating deep neural networks,
thereby embedding data-driven priors and fine-tuned models directly into the established
optimization framework.

Plug-and-Play Priors

We revisit the ADMM, Equations (1.11-1.13), where an auxiliary variable z is introduced
to decouple the fidelity and regularization terms. A key observation is that the z-update
step (1.12) can be interpreted as a denoising operation. To understand this, we can
rewrite the z-update in a more suggestive form:

zk+1 = arg min
z

{︃1
2∥z − (uk+1 + vk)∥2

2 +
λ

ρ
Φ(z)

}︃
. (1.19)

In this formulation, the term ∥z − (uk+1 + vk)∥2
2 forces the variable z to be close to the

current estimate uk+1 + vk, which can be thought of as a noisy version of the true image.
The regularization term Φ(z) acts to suppress the noise and enforce the desired image
properties. By the definition of the proximal operator, Equation (1.19) is equivalent to:

zk+1 = prox λ
ρ

Φ

(︂
uk+1 + vk

)︂
. (1.20)

This operator acts as a denoising function, mapping a noisy input to a cleaner version
that adheres to the prior encoded by Φ.

Plug-and-play priors (PnP) introduced by Venkatakrishnan et al. [77] exploit
this interpretation by replacing the proximal operator with an off-the-shelf denoiser
(e.g., BM3D). Subsequent developments [78] extended this idea by using learned denois-
ers, denoted by Dσ, typically deep CNNs trained to remove additive noise at specific
levels σ. In the PnP framework, the z-update is modified as follows:

zk+1 = Dσ

(︂
uk+1 + vk

)︂
. (1.21)

This replacement bypasses the need to explicitly define or solve for Φ(u); instead, the
denoiser implicitly enforces a learned image prior based on large-scale training data.
The success of this approach stems from the denoiser’s ability to remove noise while
preserving essential structures and textures, thereby effectively replacing the proximal
operator of a designed regularizer.
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Regularization by Denoising

Regularization by Denoising (RED) proposed by Romano et al. [79] builds on a similar
idea but explicitly incorporates the denoiser into the regularization term. In RED, the
regularizer is defined as

Φ(u) =
1
2uT

(︂
u −Dσ(u)

)︂
. (1.22)

This formulation directly ties the regularization penalty to the performance of the
denoiser. By minimizing this term, the optimization process encourages the reconstructed
image u to be close to its denoised version, effectively leveraging the power of the denoiser
both for regularization and to improve convergence properties.

By extending the denoiser-centric framework of RED, Liu et al. introduced Reg-
ularization by Artifact-Removal (RARE) [80], which leverages deep networks trained
to suppress a broader range of artifacts beyond mere noise. This approach enables the
reconstruction algorithm to incorporate richer prior information, thereby enhancing
robustness and image quality in more challenging imaging scenarios.

Figure 1.9: A conceptual illustration of deep unrolling for image deblurring. A classical iterative
algorithm (e.g., ADMM) denoted by r(·; ρ) with parameters ρ is “unrolled” into a fixed number of
layers r(k), each corresponding to one iteration of the original method. The input measurements
(left) and the output reconstruction (right) are exemplified by a degraded and a restored tiger
image, respectively. The unrolled layers incorporate learnable parameters θ = {θ(1), θ(2), θ(3)},
enabling end-to-end training for improved restoration performance.

Deep Unrolling

Deep algorithm unrolling [46, 81–83], also known as deep unfolding, bridges classical
iterative algorithms and deep learning by “unrolling” each iteration of an optimization
method (e.g., ADMM) into a corresponding layer in a neural network (see Figure 1.9).
This transforms a classical update rule r(·; ρ), parametrized by fixed ρ, into a structured,
multi-layer model:

N θ = r(K) ◦ · · · ◦ r(1), (1.23)

where each r(k) has learnable parameters θ(k), and θ = {θ(1), · · · , θ(K)}.
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Basic unrolled models keep the algorithmic structure largely intact, only learning
certain parameters such as step sizes or penalty weights. More advanced approaches go
further by replacing key steps (e.g., proximal operators) with learned neural modules. For
instance, in unrolled ADMM, instead of using a fixed denoising prior in the z-update,
one can learn a denoising network D

(k)
θz

, similar to PnP methods. The u-update
step can also be implemented as a trainable neural block N (k)

θu
that directly embeds

the degradation operator D to enforce data fidelity. This formulation ensures that
the physical model is incorporated at each iteration, guiding the network to respect
forward-model constraints. The dual variable update in unrolled ADMM often remains
unchanged.

As illustrated in Figure 1.9, deep unrolling takes an initial degraded input and
applies a sequence of learned updates r(k), mimicking classical iterations, to reconstruct
a clean output image. Each layer’s parameters, θ(k) = {θ

(k)
u , θ

(k)
z } in the ADMM-based

example, are learned end-to-end using supervised learning. This hybrid formulation
maintains the interpretability and convergence behavior of classical algorithms, while
improving performance through data-driven learning. The result is a task-specific,
trainable network N θ that often outperforms traditional iterative approaches in both
speed and quality.

Deep Equilibrium Models

Deep equilibrium models (DEQ) [84] build on deep unrolling and go even further
by defining the network implicitly through its fixed point rather than by stacking a
predetermined number of layers. In DEQ, the solution û is defined by the equilibrium
condition

û = N θ(û; g), (1.24)

where N θ is a learnable update function designed to mimic a single iteration of a
traditional optimization algorithm by taking as input an image estimate along with
the measurement data g and producing an updated estimate that better adheres to
the forward model and desired image characteristics. DEQ seeks a fixed point through
iterative refinement (using fixed-point iterations or implicit differentiation), thereby
decoupling the number of model parameters from the number of iterations required
for convergence. This yields a compact yet powerful representation while maintaining
efficiency during both training and inference.

The methods discussed above illustrate the trend toward hybrid strategies that merge
the structure of classical model-based formulations with the learning capacity of deep
networks. By integrating explicit knowledge of the forward operator with data-driven
priors (either through advanced denoisers or via learned iterative schemes) these hybrid
approaches achieve both interpretability and state-of-the-art restoration performance.
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2Modern Trends in Image Restoration

Recent advances in image restoration have embraced the integration of deep
generative models into classical inversion frameworks. Diffusion models, for

example, have emerged as powerful learned priors operating through the iterative
refinement of noise. Originally devised to generate new images from learned distributions,
this process effectively regularizes the inversion task. We close this chapter with a brief
introduction to implicit neural representations, a fundamentally different approach to
addressing inverse problems that has become the primary focus of our recent research
(Sections 5.4-5.5).

2.1 bayesian approach and diffusion models

In Section 1.2, we formulated classical restoration methods as variational optimiza-
tion problems. An alternative yet closely related viewpoint is provided by the

Bayesian paradigm [85], which provides a principled framework to tackle ill-posed
problems by introducing prior knowledge as a probability distribution. Bayes’ theorem
allows us to compute the posterior distribution of the unknown image u given the
observation g:

p(u | g) ∝ p(g | u) p(u) , (2.1)

where p(g | u) is the likelihood, defined by the forward model and noise statistics
(e.g. Equation (1.1)) and p(u) is the prior distribution reflecting our knowledge of
plausible images. In other words, among all images that could explain g, we prefer those
that are a priori more likely. This Bayesian formulation is very general and modular,
and can be leveraged in different ways.

A common practical approach is maximum a posteriori (MAP) estimation, which
finds the single most probable u given g. Maximizing the posterior probability in
Equation (2.1) is equivalent to minimizing the negative log-posterior:

ûMAP = arg min
u

{︃
− log p(g|u) − log p(u)

}︃
. (2.2)

Here, we can define the data fidelity term as L(u) = − log p(g|u) and the regularization
term as λΦ(u) = − log p(u). Thus, MAP estimation naturally leads to the classical
variational formulation of the inverse problem in Equation (1.4). For example, assuming
a smoothness prior for u might lead to using TV regularization, while employing a
quadratic penalty Φ(u) = ∥u∥2

2 results in the well-known Tikhonov regularization.
Furthermore, if we assume that the noise n in Equation (1.1) is independent and

Gaussian – that is, n ∼ N (0, σ2I), where σ2 is the noise variance – the likelihood can
be written as

p(g|u) ∝ exp
(︃

− 1
2σ2 ∥D(u) − g∥2

2

)︃
. (2.3)

Thus, minimizing the negative log-likelihood L(u) recovers the familiar least-squares
error, as in Equation (1.5).

Classical methods use handcrafted priors Φ(u) to encode image knowledge, though
these are often too simplistic. Standard deep learning approaches learn implicit priors
from (g, u) pairs, but they are typically task-specific and require a separate model for
each problem. More recently, generative models (such as diffusion models) have emerged.
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Although they also demand substantial data, they learn the complete distribution p(u)

directly. This learned prior can then be combined with the known likelihood p(g|u) via
Bayes’ rule (2.1), offering a universal framework for addressing various inverse problems
in imaging.

Figure 2.1: Schematic illustration of the forward (and reverse) diffusion process used in diffusion
models [86]. An original image is gradually corrupted by Gaussian noise across multiple steps
until it becomes nearly random. By learning to reverse this noising process, diffusion models
capture rich image priors that can be integrated with known forward operators (likelihoods) to
solve ill-posed inverse problems. Unlike classical model-based approaches that rely on handcrafted
priors (or supervised deep learning methods that often require large paired datasets) diffusion
models provide a robust generative framework that can address a wide range of restoration tasks
through iterative refinement.

Diffusion Models

Diffusion models, also known as denoising diffusion probabilistic models or score-based
generative models [86–88], learn the full image distribution p(u) by reversing a gradual
noising process. In the forward process (Figure 2.1), a clean image u0 is progressively
perturbed by Gaussian noise over T steps, such that at each step

q(ut | ut−1) = N
(︃

ut;
√︁

1 − βt ut−1, βtI

)︃
, (2.4)

for t = 1, ..., T with 0 < βt < 1. Composing these transitions yields

q(ut | u0) = N
(︃

ut;
√

ᾱt u0, (1 − ᾱt)I

)︃
, (2.5)

where ᾱt =
∏︁t

s=1(1 − βs). For a well-chosen schedule, ᾱt diminishes with t so that uT

approaches a standard normal distribution.
The reverse process (Figure 2.1) can be modeled by a parameterized Markov chain

pθ(ut−1 | ut) that approximates the true reverse conditionals q(ut−1 | ut, u0) [86]. This
is typically defined as

pθ(ut−1 | ut) = N
(︃

ut−1; µθ(ut, t), βtI

)︃
, (2.6)

with the mean computed from the predicted noise ϵθ(ut, t) as

µθ(ut, t) =
1√
ᾱt

(︃
ut − βt√

1 − ᾱt
ϵθ(ut, t)

)︃
. (2.7)

The noise prediction function, ϵθ(ut, t), is typically a deep neural network with
a U-net backbone [66] often enhanced with attention mechanisms [55]. The training
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objective is to minimize the error between the true noise and the network’s prediction.
Specifically, the loss is defined as

Lθ = Eu0, ϵ, t

⃦⃦⃦⃦
ϵ − ϵθ

(︃√
ᾱt u0 +

√
1 − ᾱt ϵ, t

)︃⃦⃦⃦⃦2
, (2.8)

where ϵ is sampled from N (0, I). After training, generation is performed by
initializing uT from a standard normal distribution N (0, I) and iteratively applying
the reverse transitions pθ(ut−1 | ut) to obtain u0.

Unlike GANs, which rely on unstable adversarial training, diffusion models generate
images through a sequence of T iterative refinement steps. By learning a comprehensive
generative prior directly from data and effectively integrating measurement fidelity,
these models offer a flexible and robust approach to solving a wide range of inverse
imaging problems.

Figure 2.2: Schematic illustration of a diffusion-based image restoration process for deblurring.
A measured image g serves as a conditioning signal, which can be incorporated either through
an end-to-end learned model (e.g., SR3 [89]) or in a plug-and-play fashion (e.g., Denoising
Diffusion Restoration Models [90]). Starting from random noise uT , the model iteratively refines
its estimate ut until it converges to a deblurred output u0.

Diffusion Models in Inverse Problems

In the context of inverse problems, the diffusion model acts as a learned prior pθ(u0).
By incorporating the likelihood p(g | u) derived from the forward model, the restoration
process can be guided toward solutions that are both plausible and consistent with the
observed data (see Figure 2.2).

Several strategies have been proposed to incorporate the likelihood into diffusion-
based inverse problems [91, 92]. One approach trains an end-to-end conditional model
that learns the reverse process pθ(ut−1 | ut, g) by directly conditioning on the observed
data (e.g., via concatenation or cross-attention) to sample from posterior p(u | g). For
example, Saharia et al. [89] trained a diffusion model (SR3) conditioned on low-
resolution images to perform super-resolution. While this approach demands a large
paired dataset and custom training per problem, it enables fast inference.

Alternatively, plug-and-play style methods [93–95] integrate measurement consis-
tency directly into the reverse process. In its simplest form, one applies a gradient-based
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update after each step, typically by minimizing a term such as ∥D(u) − g∥2
2. This is

analogous to iterative techniques like PnP (explained in the previous chapter), where the
degradation operator D guides the reconstruction toward solutions consistent with the
forward model. Another strategy uses a reference image either to align low-frequency
components during diffusion [96] or to perform exact conditional sampling from a
Gaussian posterior [90].

To address general and even nonlinear inverse problems, Chung et al. introduced
Diffusion Posterior Sampling [97], which alternates between unconditional generation
and measurement-guided gradient descent. Beyond classical inverse problems, diffusion
models extend to domain-specific tasks. In medical imaging, they facilitate compressed
sensing MRI, producing reconstructions that closely match acquired k-space measure-
ments [98]. They also enable blind restoration, where the degradation model is partially
or entirely unknown [99].

A key strength of diffusion-based inverse problem solvers is their ability to produce
realistic, high-detail outputs that respect the measurements. On the downside, diffusion
methods typically involve many iterations and thus can be computationally intensive.
Ongoing research efforts such as one-step distillation aim to accelerate the sampling
process without sacrificing reconstruction quality [100].

Latent Diffusion and Text-Driven Image Restoration

Another active direction formulates inversion in the latent space of generative models.
Latent diffusion models [101] compress images into lower-dimensional representations,
enabling more efficient restoration. However, working in the latent space poses unique
challenges: the measurement must be accurately mapped into the latent domain, and the
decoded image must remain consistent with the original observation. Recent studies have
provided rigorous analyses and convergence guarantees in this context, with algorithms
such as [102, 103] ensuring measurement consistency during latent sampling. Notably,
“Gaussian is All You Need” [104] introduced a covariance-corrected likelihood objective
that improves convergence to the true posterior without the need to backpropagate
through the entire diffusion chain.

A particularly promising avenues are text-guided diffusion models [105]. Methods
such as prompt tuning [106], regularization by text [107], and the SPIRE framework [108]
condition the restoration process on natural language descriptions, thereby enabling user-
driven semantic guidance alongside the physics-based measurements. These techniques
help resolve ambiguities that cannot be addressed by purely pixel-wise or even perceptual
fidelity terms, thereby opening up new possibilities for interactive inverse problem
solving.

In conclusion, diffusion models offer a promising framework for inverse problems by
integrating measurement consistency with learned priors that capture the complete image
distribution. Recent surveys [92, 109–111] highlight their wide applicability. Future
work should focus on efficiency [112] and exploring novel approaches like interactive
restoration.
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2.2 implicit neural representations

Real-world scenes are inherently continuous, yet measurement devices, such as
digital camera sensors, capture only discrete samples, potentially missing fine

details. To address this challenge, researchers have developed a promising approach
that represents images as continuous functions. Implicit neural representations (INRs),
also known as Neural Fields [113–115], embody this concept by encoding an image u as
a coordinate-based neural network (Figure 2.3). In these models, spatial coordinates
are fed into a multilayer perceptron (MLP) that generates the corresponding intensity
values. This method bypasses the constraints of fixed pixel grids by allowing arbitrary
sampling resolutions, and its storage requirements depend on scene complexity rather
than pixel count.

Figure 2.3: A high-level illustration of implicit neural representations (INRs), where a coordinate-
based neural network (for example, a multilayer perceptron) replaces the traditional pixel
grid. Given spatial (and potentially temporal and other) coordinates, the INR outputs the
corresponding intensity or color values, allowing flexible sampling at arbitrary resolutions. By
integrating physics-based forward operators (for example, convolution for deblurring, volume
rendering for 3D scenes, or Radon transforms for tomography) into this framework, a wide range
of inverse problems (such as image deblurring, multi-view 3D reconstruction, or CT imaging)
can be tackled in a single end-to-end optimization. Because the model is fully differentiable,
it is directly trained on measured data, ensuring high fidelity to the underlying measurements
while leveraging the network’s architecture as an implicit prior for natural image features.

Moreover, the differentiable nature of INRs facilitates their integration into end-to-
end optimization frameworks, including inverse problem solvers that use physics-based
forward models. In this process, the reconstructed image is implicitly encoded in a weight
space that relies on the architecture as a prior for natural image features. Therefore, the
network’s inherent implicit regularization is used to improve reconstruction quality [116].

Mathematical Formulation

Formally, let u : Ω → RC be the unknown continuous image (with C channels) defined
on a domain Ω. An INR models the image u as a coordinate-based MLP uθ(r), with
parameters θ, and coordinates r ∈ Ω. Solving the inverse problem with an INR entails
finding network parameters θ such that uθ explains the observations g = D(u) + n.
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This is typically done by minimizing a suitable loss function enforcing data fidelity,
possibly with additional regularization Φ(uθ):

θ̂ = arg min
θ

{︃
∥ D(uθ) − g ∥2

2 + λ Φ(uθ)

}︃
. (2.9)

In practice, the loss can be computed either by sampling the continuous network uθ

at the pixel locations of g or by defining D (and possibly the regularizer Φ ) continuously
and then discretizing their outputs for loss computation. In many INR approaches, no
explicit regularizer is used (λ = 0); instead, the network’s architecture serves as an
implicit prior that discourages fitting spurious high-noise solutions. The optimization in
Equation (2.9) is typically performed via gradient descent on θ, treating the problem
analogously to a MAP estimation: the likelihood p(g | u) (from the forward model) is
encoded by the data fidelity term, and any prior belief p(u) can be encoded implicitly
by the network uθ, explicitly by a regularizer Φ, or both.

In practice, one might initialize θ randomly and optimize until convergence or until
the D(uθ) fits g to an acceptable degree without overfitting noise (early stopping
therefore acts as another form of regularization [117]). The result is a set of learned
weights θ̂, from which the restored image is obtained as û(r) = uθ̂(r). Because uθ

is continuous, the reconstruction û can be queried at any resolution or coordinate,
providing a super-resolved or geometry-adapted solution as needed.

Comparison with Other Methods

The INR approach stands apart from other inverse problem solvers in several respects.
In contrast to methods that require external training data, such as supervised CNNs or
transformers, the INR framework typically optimizes solely on the given measurement g

(see Equation (2.9)), much like the DIP approach. However, while DIP employs a CNN
that outputs an image on a fixed grid, the INR’s coordinate-based MLP provides a
truly continuous representation. This allows reconstructions to be sampled at arbitrary
resolutions, offering increased flexibility.

Modern diffusion models, by comparison, leverage large-scale datasets to learn
expressive priors that can generate high-frequency details and photo-realistic textures.
Yet, their effectiveness comes with the cost of extensive pre-training and often task-
specific conditioning, making them less adaptable in scenarios where data are scarce or
the degradation D is unique.

Similarly, supervised deep learning methods learn a mapping from g to u using
paired data and achieve faster inference through a single forward pass. However, these
models may not enforce strict measurement fidelity in the inverse problem setting and
can be prone to errors when the test input deviates from the training distribution.

Standard INR optimization typically yields a single estimate, whereas generative
models (such as diffusion models and GANs) can sample multiple plausible solutions to
capture posterior uncertainty. Recent research, including the Implicit Diffusion Model
(IDM) [118] for high-fidelity continuous image super-resolution, has integrated INR into
the decoding phase of diffusion denoising frameworks. Although these approaches show
considerable promise, fully harnessing INR within generative models remains an open
research challenge.
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Recent Developments in INRs

Recent advances in INRs have enabled precise signal representation and reconstruction
using neural networks. Early breakthroughs, such as NeRF [70] for mapping 3D
coordinates to radiance and density, and DeepSDF [119] for representing 3D shapes via
continuous signed distance functions, demonstrated that MLPs can encode complex
scenes. The Local Implicit Image Function (LIIF) [120] confirmed that INRs can
effectively represent 2D images, enabling extrapolation to resolutions up to 30 times
higher than the original. NeRV [121] even showed the capability to encode entire videos
in neural networks. Furthermore, recent research has extended the INR framework to
the realm of image compression [122, 123].

Early INR models, however, suffered severely from spectral bias [124–126]. Spectral
bias is a phenomenon where MLPs exhibit a natural tendency to learn low-frequency
functions more easily than high-frequency details. This issue was particularly pronounced
in early models due to the use of ReLU activations, which often led to oversmoothing
of fine details. One effective strategy to address spectral bias is positional encoding.
Initially introduced in Fourier feature mappings [127] and later adopted by NeRF,
positional encoding helps the network learn higher-frequency components more effectively.
SIREN [116] further advanced this approach by substituting ReLU activations with
sine functions, significantly enhancing the network’s ability to capture fine details.
Recent advancements in the field have introduced new techniques and architectures
that further expand the INR toolkit. Gaussian INRs [128] provide improved frequency
localization, while wavelet-based INRs (WIRE) [117] leverage multi-scale analysis to
enhance robustness against noise.

Additionally, novel activation functions such as the hyperbolic oscillation function
(HOSC) [129] and the sinus cardinal function (SINC) [130], inspired by the Shannon
sampling theorem, extend the network’s capacity to capture high-frequency details.
Finally, architectures like High-Order Implicit Neural Representation (HOIN) [131]
and FINER [132], which utilize variable-periodic activation functions, have emerged as
strong contenders for establishing a new state-of-the-art INR backbone.

Conditioning has emerged as another critical factor in enhancing INR performance,
as it integrates contextual or domain-specific information (often via latent embeddings)
into the network. This additional guidance helps the network achieve higher-fidelity
reconstructions and improved generalization. The most common conditioning approaches
are modulation of activation functions [133–135], latent embedding concatenation [119],
and hypernetwork frameworks [136].

Scalability and efficiency remain central challenges. Recent adaptive strategies like
ACORN [137], multiresolution hash encoding [138], meta-learning [139], and hierarchical
frameworks such as KiloNeRF [140] and MINER [141], have shown promise in accelerating
training and inference. Furthermore, dictionary-based methods such as Neural Implicit
Dictionary [142] offer compact representations.

Applications in Inverse Problems

INRs excel in many ill-posed inverse imaging scenarios. In super-resolution, models like
LIIF [120] and IDM [118] learn continuous mappings from low-resolution images, en-
abling arbitrary resolution queries and high-quality reconstructions. For image denoising,
wavelet-based INRs effectively filter noise while preserving structural details [117]. In
medical imaging, methods such as CoIL [143] directly map spatial coordinates to inten-
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sities for CT reconstruction, while techniques inspired by NeRP [144] extend these ideas
to MRI. INRs also excel in image inpainting and interpolation, seamlessly filling missing
regions by learning continuous functions [120]. For video interpolation, spatial-temporal
consistency is achieved in models like CURE [145] and VideoINR [146]. Additional
inverse problem applications include fundamental tasks such as deblurring [147, 148].
Interestingly, Xu et al. introduced an implicit neural signal processing network [149] to
perform inverse problem tasks like image deblurring directly on INRs, without explicit
decoding.

Collectively, these advancements demonstrate that INR-based models offer robust and
efficient alternatives to traditional discrete methods across a wide range of inverse imaging
challenges. Continued research is expanding the practical applications and enhancing
the theoretical understanding of INRs, as highlighted in recent surveys [113–115].
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3Goals of the Thesis

Advancing the field of image restoration, particularly in addressing inverse prob-
lems, requires a careful integration of classical optimization methods and modern

deep learning approaches. The challenges posed by real-world degradations such as blur,
noise, and subsampling necessitate robust solutions that can generalize across diverse
imaging conditions. This thesis explores these challenges through three key objectives:

• Enhance traditional deblurring techniques by refining Wiener filtering, addressing
its limitations with an iterative approach that mitigates ringing artifacts while
maintaining computational efficiency.

• Develop deep learning-based image restoration frameworks leveraging deep un-
rolling and self-supervised learning techniques to jointly tackle multiple restoration
tasks (e.g., deblurring, demosaicking, denoising, super-resolution, and image fu-
sion). Emphasis will be placed on effectively reducing restoration-induced artifacts
while eliminating dependence on extensive paired training datasets.

• Establish implicit neural representations as a novel tool for image restoration tasks
that have not been previously explored with INR (e.g., demosaicking); evaluate
their ability to generalize across diverse degradations; and design a self-adaptive
INR-based framework for robust image reconstruction under varying real-world
conditions.
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4Structure of the Thesis

This thesis addresses the challenge of inverse problems in image restoration by
developing innovative methods to reconstruct high-quality images from degraded

observations across diverse applications. Two tables guide the reader through the
contributions of this work. Table 4.1 outlines the restoration tasks addressed by
each method, ranging from denoising to super-resolution. Table 4.2 illustrates the
evolution of the techniques, from classical model-based methods to advanced hybrid
and self-supervised strategies with implicit and explicit regularization. Organized as
five interconnected studies, the thesis presents a cohesive body of work that bridges
traditional image restoration approaches with modern, data-driven solutions.

IWFT

(Sec. 5.1)
D3Net

(Sec. 5.2)
Dual-Cycle

(Sec. 5.3)
NeRD

(Sec. 5.4)
INRID

(Sec. 5.5)
Denoising ✓ ✓ ✓ ✓ ✓

Deblurring ✓ ✓ ✓ ✓

Demosaicking ✓ ✓ ✓

Deringing ✓ ✓

Image fusion ✓

Super-resolution ✓ (✓) (✓)

Table 4.1: Overview of inverse problem applications addressed in the thesis. This table summa-
rizes the capabilities of each proposed method – IWFT, D3Net, Dual-Cycle, NeRD, and INRID
– in tackling specific restoration tasks such as deblurring, demosaicking, deringing, image fusion,
and super-resolution. Note that denoising is inherently incorporated to varying extents across
all approaches through the application of appropriate regularization strategies, whether implicit
or explicit. (✓) indicates that the method was not explicitly evaluated for super-resolution but
may be capable of it due to the resolution-agnostic nature of implicit neural representations.

IWFT

(Sec. 5.1)
D3Net

(Sec. 5.2)
Dual-Cycle

(Sec. 5.3)
NeRD

(Sec. 5.4)
INRID

(Sec. 5.5)
Model-based ✓

Hybrid ✓ ✓ ✓

Supervised ✓ ✓

Self-supervised ✓ ✓

Explicit reg. ✓ ✓ ✓

Implicit reg. ✓ ✓ ✓ ✓

Table 4.2: Summary of methodological attributes of the proposed methods. The table highlights
the evolution from classical model-based techniques to modern deep learning frameworks,
detailing aspects such as hybrid learning strategies, supervised versus self-supervised training,
and the integration of explicit and implicit regularization, as discussed across the dissertation.
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4.1 the thesis in brief

The first study tackles image deblurring using an iterative Wiener filtering approach
named IWFT (Sec. 5.1). While traditional Wiener filtering is analytically elegant, it
suffers from ringing artifacts near high-contrast regions. IWFT integrates a thresholding
step within an ADMM-inspired framework to progressively refine the reconstruction,
focusing on deblurring and suppressing ringing artifacts (i.e., deringing). As shown in the
tables, this approach is rooted in a model-based framework with explicit regularization.

The second study introduces D3Net (Sec. 5.2), a deep unrolling method that
reformulates iterative optimization as a structured neural network. By replacing hand-
crafted iterative updates with learnable convolutional filters, D3Net jointly handles
demosaicking, deblurring, and deringing. It leverages supervised learning along with
both implicit and explicit regularization, embodying a hybrid framework that combines
classical interpretability with modern deep learning adaptability.

The third study presents Dual-Cycle (Sec. 5.3), a self-supervised framework tailored
for multi-view fluorescence microscopy. Exploiting cycle-consistency in a CycleGAN-
based architecture, Dual-Cycle fuses two perpendicular measurements to reconstruct
high-resolution 3D images without the need for paired training data. This method
extends its application to super-resolution and image fusion, as highlighted in the tables,
and relies on implicit regularization through the DIP (Deep Image Prior).

In the fourth study, the focus shifts to Neural Field-Based Demosaicking (NeRD)
(Sec. 5.4). By representing images as continuous functions via a coordinate-based
multilayer perceptron with sinusoidal activations, NeRD facilitates smooth interpolation
and better adaptation to image structures. Supported by a supervised CNN-based
encoder and implicit regularization through INRs, NeRD distinguishes itself as the first
method to leverage implicit neural representations for image demosaicking, achieving
reconstruction quality on par with state-of-the-art approaches.

While supervised learning has driven significant advancements in image demosaick-
ing, its reliance on fixed training distributions often leads to reduced performance
when confronted with out-of-distribution examples. Addressing these limitations, the
final study introduces INRID (Sec. 5.5), a fully self-supervised framework for image
demosaicking. INRID dynamically optimizes network parameters on a per-image basis
while incorporating both a Bayer-pattern consistency loss and an initial estimation-
based regularization. This robust framework effectively handles real-world degradations
such as blur and noise by merging self-supervision with hybrid learning and additional
implicit regularization through INRs.

Collectively, these studies illustrate a progression from classical model-based methods
toward hybrid approaches (e.g., deep unrolling), advancing further into self-supervised
learning leveraging deep image priors, and ultimately reaching continuous implicit
representations, culminating in a novel paradigm for image demosaicking. The following
chapter details the specific contributions of each publication.
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5Publications

5.1 paper 1 - iwft

Filip Šroubek, Tomáš Kerepecký, and Jan Kamenický, “Iterative
Wiener filtering for deconvolution with ringing artifact

suppression,” in 2019 27th European Signal Processing Conference
(EUSIPCO). September 2019, pp. 1–5, IEEE

Image deblurring addresses the problem of recovering images degraded by con-
volution with a blur kernel, a fundamental challenge in computational imaging;

leading to loss of fine details. While Wiener filtering is a well-established method for
deconvolution, it is prone to ringing artifacts near strong edges due to the ill-posed
nature of the problem. This work introduces IWFT (Iterative Wiener Filtering with
Thresholding), an approach that refines the classical Wiener filter by incorporating
an iterative optimization process inspired by the ADMM. The key innovation of the
method lies in decomposing the deblurring process into a sequence of restoration and
update steps, where each iteration progressively refines the image to suppress artifacts
while preserving detail. The method operates entirely in the spatial domain, avoiding
frequency-domain boundary artifacts, and introduces learned restoration and update
filters that adapt to different types of blur and noise. The framework is flexible and can
be extended to other restoration tasks, such as demosaicking and super-resolution. Ex-
perimental results (visually presented in Figure 5.1) confirm that the proposed iterative
Wiener filtering method substantially reduces ringing artifacts compared to traditional
Wiener filtering. For additional quantitative results and analysis of computational
efficiency, refer to the reprinted paper.

(a) Blurred (b) Wiener (c) Proposed

Figure 5.1: Deconvolution without ringing artifacts: (a) the blurred input image and PSF (inset),
(b) restoration using the Wiener filter, (c) restoration using the proposed iterative Wiener
filtering and thresholding. Notice ringing artifacts in the Wiener solution (b) and their absence
in the proposed method (c).
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Contribution of the Paper

This paper introduced an iterative extension of Wiener filtering to address ringing
artifacts in image deblurring. By integrating restoration and update filters within an
optimization-inspired framework, the approach significantly enhances deconvolution
quality (reduces ringing while preserving detail). The method avoids frequency-domain
constraints, enabling a flexible and generalizable solution applicable to various inverse
problems, including demosaicking and super-resolution.

Contribution of the Author

The main contribution of Tomáš Kerepecký in this work was to perform experiments
and to provide final feedback on the manuscript. These efforts helped refine the overall
study and supported the validation of its methodologies.
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5.2 paper 2 - d3net

Tomáš Kerepecký and Filip Šroubek, “D3net: Joint demosaicking,
deblurring and deringing,” in 2020 25th International Conference

on Pattern Recognition (ICPR). January 2021, pp. 1–8, IEEE

Modern camera sensors capture images using a color filter array, with only
one color channel recorded per pixel. To reconstruct a full RGB image,

demosaicking estimates the missing color information. However, raw sensor data is
further degraded by issues such as lens blur and sensor noise, which require multiple
restoration steps. Traditional pipelines typically address these tasks independently,
leading to suboptimal results as errors can propagate from one stage to the next.
This paper presents a hybrid approach that leverages deep learning to jointly perform
demosaicking, deblurring, and deringing, three critical processes for effective digital
camera image restoration.

This work proposes D3Net, a CNN designed to perform joint restoration in an end-to-
end manner. Inspired by model-based method IWFT (Section 5.1), the network structure
mimics the iterative steps of classical deconvolution methods while replacing fixed filters
with learnable parameters (see Figure 5.2). The unrolled architecture consists of a
restoration layer “rConv” responsible for demosaicking and initial deblurring, followed
by three update layers that iteratively refine the image and suppress ringing artifacts.
D3Net retains interpretability and efficiency while significantly improving restoration
quality over conventional approaches.

A key advantage of D3Net is its ability to learn effective restoration filters from
a minimal amount of training data. Unlike conventional deep learning models that
require large datasets, D3Net can be trained using only a single pair of degraded and
ground-truth images. This is made possible by the structured nature of the network,
which follows the principles of deep unrolling.

The method is evaluated against state-of-the-art demosaicking and deblurring tech-
niques, demonstrating superior performance in both objective image-quality metrics
(PSNR/SSIM) and visual clarity. The results further confirm that joint restoration leads
to significantly better reconstructions compared to sequential approaches.
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Figure 5.2: Architecture of the proposed D3Net based on the unrolled IWFT algorithm. Here,
rConv, gConv, and uConv denote convolutional filters, Soft represents soft thresholding, and
Add indicates a simple addition operation.
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Contribution of the Paper

This paper introduces D3Net, a joint demosaicking, deblurring, and deringing network
inspired by the deep unrolling of optimization algorithms. The network architecture
mimics an ADMM-based iterative restoration process, ensuring both interpretability
and high performance. By integrating all three restoration tasks into a single framework,
the method avoids error accumulation and significantly outperforms sequential pipelines.
The structured approach enables training on a single image pair while maintaining the
ability to generalize, making it computationally efficient and practical for real-world
imaging applications.

Contribution of the Author

The main contribution of Tomáš Kerepecký in this paper involved extensive research
on deep unrolling, formulating the core idea, and developing the methods described.
Tomáš Kerepecký was responsible for preparing data from the relevant databases,
thoroughly testing all mentioned algorithms and drafting the initial version of the
manuscript. The final version was then refined collaboratively by both authors. Tomáš
Kerepecký presented the paper as an oral contribution at the international conference.
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5.3 paper 3 - dual-cycle

Tomáš Kerepecký, Jiaming Liu, Xuan Wei Ng, David W. Piston,
and Ulugbek S. Kamilov, “Dual-cycle: Self-supervised dual-view

fluorescence microscopy image reconstruction using cyclegan,” in
2023 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). June 2023, pp. 1–5, IEEE

This paper extends the research into self-supervised learning for image restoration,
with a particular focus on fluorescence microscopy. Three-dimensional fluorescence

microscopy often suffers from spatial-resolution anisotropy, where the resolution in the
axial direction is significantly lower than in the lateral plane due to optical diffraction
limits and system aberrations. Traditional computational approaches attempt to
mitigate this issue using model-based multi-view deconvolution, where images from
multiple viewpoints are fused to reconstruct a higher-resolution image. However, these
methods rely on accurately designed fusion strategies and precise knowledge of the
imaging system’s PSF. On the other hand, using supervised deep learning techniques
for this task is limited by the lack of sufficient ground truth data.

This work introduces Dual-Cycle, a self-supervised deep learning framework designed
to perform joint deconvolution and fusion of dual-view fluorescence microscopy images.
The method is inspired by the CycleGAN approach, leveraging a cycle-consistency
loss to enable high-resolution image reconstruction without requiring paired training
data. Dual-Cycle comprises two main components: a dual-view generator that fuses
perpendicular views of the sample to enhance spatial resolution, and a degradation
model that incorporates estimated PSFs to guide the learning process. By embedding
physics-based priors into the learning framework, the network effectively reconstructs
isotropic-resolution 3D images while adapting to variations in imaging conditions.

Figure 5.3: Given two views with anisotropic resolution, the Dual-Cycle reconstructs a 3D
image with isotropic resolution given two views. A and B are two perpendicular views of the
same sample.
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Unlike traditional deconvolution techniques, which require manually tuned priors
and are sensitive to system-specific parameters, Dual-Cycle learns an optimal restora-
tion function directly from measurements. The model is trained solely on dual-view
measurements, enabling it to generalize to various imaging conditions.

Experimental validation was conducted on two types of data: synthetic microscopy
datasets (see Figure 5.3) and real fluorescence microscopy acquisitions (details in the
paper). The experiments demonstrate that Dual-Cycle significantly improves axial
resolution while preserving fine structural details. Furthermore, the results indicate that
the method outperforms traditional multi-view deconvolution techniques by achieving
higher PSNR and superior visual quality.

Contribution of the Paper

This paper presents Dual-Cycle, a self-supervised framework for dual-view fluorescence
microscopy image reconstruction, based on cycle-consistent generative networks. The
proposed method eliminates the need for external ground-truth supervision by leveraging
the inherent structural consistency in multi-view imaging. The framework integrates a
physics-guided degradation model, enabling the network to learn an optimal deconvo-
lution strategy. Experimental results on both synthetic and real microscopy datasets
confirm that Dual-Cycle significantly improves axial resolution and outperforms existing
multi-view fusion methods.

Contribution of the Author

The main contribution of Tomáš Kerepecký in this work consisted of outlining the core
conceptual framework, conducting and analyzing the principal experiments, and prepar-
ing the final draft of the manuscript. This involved designing the study methodology,
gathering and evaluating the data, and ensuring the coherence of the paper’s overall
structure and presentation. Tomáš Kerepecký presented the work at the international
conference.
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5.4 paper 4 - nerd

Tomáš Kerepecký, Filip Šroubek, Adam Novozámský, and Jan
Flusser, “Nerd: Neural field-based demosaicking,” in 2023 IEEE

International Conference on Image Processing (ICIP). October
2023, pp. 1735–1739, IEEE

D emosaicking, a fundamental step in image processing that reconstructs full-
color images from raw sensor data, has traditionally relied on computationally

efficient model-based methods, such as bilinear or edge-directed interpolation, which
often struggle with fine textures and color artifacts. More recent deep learning-based
approaches, particularly CNNs and transformers, have significantly improved demosaick-
ing performance, but they are often constrained by their reliance on pixel-grid-based
processing, limiting their adaptability across different resolutions.

This work presents NeRD (Neural Field-Based Demosaicking), the first application of
implicit neural representations to the problem of demosaicking (depicted in Figure 5.4).
Instead of treating images as discrete pixel arrays, NeRD represents images as continuous
functions parameterized by a neural network. The core of NeRD is a coordinate-based
multilayer perceptron with sine activation functions, which maps spatial coordinates to
corresponding RGB values. The demosaicking process is guided by a hybrid architecture
combining a residual CNN and a U-Net-based encoder, which extracts local image priors
from the Bayer pattern and conditions the implicit neural representation. This allows
the model to leverage both local and global features, improving the consistency and
accuracy of color reconstruction.

The method is evaluated against state-of-the-art demosaicking techniques, including
CNN-based and transformer-based models. Experimental results demonstrate that
NeRD outperforms traditional and CNN-based methods while significantly reducing the
performance gap between INR-based and transformer-based demosaicking models. The
ablation study highlights the importance of local feature encoding and skip connections
in the implicit representation framework, showing that these architectural choices
significantly enhance reconstruction quality.

Encoder

a) Bayer pattern b) RGB imageMLP

Figure 5.4: Simplified illustration of NeRD, the first demosaicking method using a coordinate-
based implicit neural representation and a local encoding technique (ResNet + U-Net). For
exact architecture details, refer to the reprinted paper below.
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Contribution of the Paper

This paper introduces NeRD, the first neural field-based approach to demosaicking,
leveraging implicit neural representations to reconstruct full-color images from Bayer
patterns. By integrating a hybrid ResNet and U-Net encoder with a coordinate-based
MLP, the method preserves spatial consistency and enhances color reconstruction quality.
The resolution-agnostic nature of NeRD allows it to generalize across different image sizes,
outperforming traditional and CNN-based demosaicking methods. The experimental
evaluation confirms its effectiveness, demonstrating competitive performance against
state-of-the-art transformer-based models.

Contribution of the Author

The main contribution of Tomáš Kerepecký in this paper involved extensive research
on implicit neural representations, formulating the core idea, developing the methods
described, and thorough testing of the proposed algorithms. Tomáš Kerepecký was
responsible for preparing relevant data, conducting experiments, and drafting the initial
version of the manuscript. The final paper was then refined collaboratively with other
co-authors and presented at the international conference.
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5.5 paper 5 - inrid

Tomáš Kerepecký, Filip Šroubek, and Jan Flusser, “Implicit neural
representation for image demosaicking,” Digital Signal Processing,

p. 105022, 2025, Elsevier

Reconstruction of full-color images from raw sensor data remains a challenging
problem, especially when the input data is degraded by noise, blur, or other real-

world imperfections. Traditional demosaicking methods, both interpolation-based and
deep learning-based, often struggle when confronted with out-of-distribution conditions
(i.e., degradations not seen during training or not accounted for by the algorithm).

In response, this paper introduces INRID (Implicit Neural Representation for
Image Demosaicking), a fully self-supervised framework that adapts to each individual
image. By leveraging implicit neural representations, INRID is able to enhance the
reconstruction quality of raw sensor data, achieving superior generalization compared
to conventional CNN and transformer models trained solely on clean datasets.

The core idea of INRID is to encode each image as a coordinate-based multilayer
perceptron that maps spatial coordinates to RGB values. Unlike prior INR-based
demosaicking approaches, such as NeRD, which required supervised training on large
datasets to condition INR, INRID operates in a self-supervised manner. Figure 5.5
illustrates the conceptual diagram of the framework. The approach integrates two key
loss functions: a Bayer loss, which ensures fidelity to the raw sensor data by minimizing
the reconstruction error in the observed CFA measurements, and a complementary
loss, which regularizes the reconstruction using an initial estimate from traditional
or state-of-the-art demosaicking methods. This hybrid formulation enables INRID to
effectively utilize prior knowledge from classical algorithms while dynamically refining
the reconstruction for each image.

Figure 5.5: Conceptual diagram of INRID. The proposed approach performs demosaicking using
an implicit neural representation uθ : R2 → R3, optimized by minimizing the mean squared
error LBayer between the reconstruction uθ and the Bayer measurement b, as well as between
the reconstruction uθ and the initial demosaicked image u0 (LDemo).
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One of the major advantages of INRID is its ability to adapt to challenging degrada-
tions, such as blur and noise, without requiring retraining on new datasets. The method
employs an optimization process that iteratively updates the INR parameters to fit
each image, allowing it to recover high-frequency details lost in traditional demosaicking
methods. Experimental evaluations on standard benchmarks and real-world raw sensor
images demonstrate that INRID outperforms both traditional and deep learning-based
demosaicking approaches, particularly in cases where the input data deviates from
standard training distributions. The study further investigates the impact of various
INR architectures, including sinusoidal representations and Fourier feature mappings,
highlighting the benefits of different signal representations for inverse problems in
imaging.

Contribution of the Paper

This paper introduces INRID, a fully self-supervised INR-based technique for image
demosaicking that dynamically adapts to individual images, improving reconstruction
quality for out-of-distribution inputs. By combining Bayer loss and complementary loss,
the framework effectively integrates classical demosaicking priors with modern INR-
based reconstruction, demonstrating significant improvements over both conventional
and deep learning-based methods. INRID handles real-world degradations such as blur
and noise, showcasing its robustness across diverse imaging conditions.

Contribution of the Author

The main contribution of Tomáš Kerepecký in this paper involved formulating the core
idea, conducting extensive research on implicit neural representations, and developing
the methods described. Tomáš Kerepecký was also responsible for preparing relevant
data, carrying out experiments, and drafting the initial manuscript. The final version
was then refined collaboratively with other co-authors, incorporating additional insights
to produce the published work.
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6Contribution of the Thesis

Research presented in this thesis introduces novel methodologies that enhance
existing image restoration techniques and propose innovative approaches for

solving inverse problems in digital photography and fluorescence microscopy.

The main contributions of this thesis include:

• We introduced an iterative Wiener filtering framework (IWFT) for deblurring,
incorporating restoration and update filters to effectively suppress ringing artifacts,
while maintaining computational efficiency.

• We designed a deep unrolled neural network (D3Net) for joint image restoration,
leveraging optimization-inspired updates to enable demosaicking, deblurring, and
deringing in a unified learnable framework.

• We proposed a self-supervised learning approach (Dual-Cycle) for reconstructing
dual-view light-sheet fluorescence microscopy images. By incorporating a cycle-
consistency loss, this method eliminates the need for paired training data.

• We introduced the first implicit neural representation technique for demosaick-
ing (NeRD), achieving reconstruction quality on par with state-of-the-art deep
learning methods and showcasing the advantages of continuous function-based
representations over pixel-based approaches.

• We introduced INRID, a self-adaptive INR framework for image demosaicking,
designed to dynamically adapt to varying degradation types, ensuring robust
generalization across distortions such as blur and noise without requiring dataset-
specific retraining.

The work presented in this thesis bridges the gap between model-based restoration,
deep learning, self-supervised and self-adaptive representations and offers new insights
into the potential of implicit neural networks for solving inverse problems in imaging.
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Abstract—Sensor and lens blur degrade images acquired by
digital cameras. Simple and fast removal of blur using linear
filtering, such as Wiener filter, produces results that are not
acceptable in most of the cases due to ringing artifacts close to
image borders and around edges in the image. More elaborate
deconvolution methods with non-smooth regularization, such as
total variation, provide superior performance with less artifacts,
however at a price of increased computational cost. We consider
the alternating directions method of multipliers, which is a
popular choice to solve such non-smooth convex problems, and
show that individual steps of the method can be decomposed
to simple filtering and element-wise operations. Filtering is
performed with two sets of filters, called restoration and update
filters, which are learned for the given type of blur and noise level
with two different learning methods. The proposed deconvolution
algorithm is implemented in the spatial domain and can be easily
extended to include other restoration tasks such as demosaicing
and super-resolution. Experiments demonstrate performance of
the algorithm with respect to the size of learned filters, number
of iterations, noise level and type of blur.

Index Terms—Wiener filter, LMMSE, deconvolution, total
variation, ADMM, non-smooth optimization

I. INTRODUCTION

Digital cameras are present in various measuring systems
including microscopes, telescopes, and also small embedded
systems like smartphones. Data acquired by camera sensors are
subject to various types of signal degradation, for example lens
and sensor blur, aberrations, color filter array (CFA) and noise.
To obtain true images of the measured scene, it is necessary
to correctly process the acquired data. The processing step
is designed to run in the camera with limited computational
capacity that allows only pixel-wise operations and some basic
filtering.

Blur degradation often remains unattended in cameras as
the cost to remove it is very high. Blur is modeled by
convolution and even if the convolution kernel – called point
spread function (PSF) – is known, the inverse problem of
deconvolution is ill-posed due to values close to zero in spectra
of common PSFs. For this reason, deconvolution methods
based solely on linear operators, such as filtering, produce
poor results.

From all linear filters, the optimal is the well-known Wiener
filter, which is popular for having an explicit form in the

This work was supported by Czech Science Foundation grant GA18-05360S
and by the Praemium Academiae awarded by the Czech Academy of Sciences.

(a) original (b) blurred (PSF)

(c) Wiener (d) proposed iterative Wiener

Fig. 1. Deconvolution without ringing artifacts: (a) the original image, (b)
the blurred input image and PSF (inset), (c) restoration using the Wiener filter
with power spectrum of the original image, (d) restoration using the proposed
iterative Wiener filtering after 10 iterations. Notice ringing artifacts in the
Wiener solution (c) and their absence in the proposed method (d).

frequency (Fourier) domain (FD) and estimates a sharp image
in one step. However, since it is a linear operator, the estimated
image exhibits ringing artifacts around edges; see an example
of Wiener output in Fig. 1(c) obtained by filtering the blurred
image in Fig. 1(b). Another disadvantage is that implementa-
tion in the FD implicitly assumes circular convolution, which
in real scenarios is violated and the so-called problem of
boundary conditions results in disturbing artifacts close to
image borders. Proposed remedies either solve the boundary
pixels separately in the spatial (image) domain (SD) [1], [2],
or modify the boundary pixels in the blurred image to better
comply with circular convolution [3], [4].

Equivalently, the problem of boundary conditions can be



solved if only a ‘valid’ part of convolution is considered. De-
convolution formulated as a least squares optimization prob-
lem with Tikhonov quadratic regularization has a closed-form
linear solution of type Ax = b; review classical restoration
methods in [5]. However, when the ‘valid’ part of convolution
is used, the inversion of A is typically not feasible and iterative
numerical methods, such as Conjugate Gradient, must be used.

To achieve deconvolution results without artifacts, we have
to leave the space of linear operators and allow non-linear
ones. This is done by introducing non-smooth regularization
terms, such as total variation [6], in the optimization problem;
see for example [7]. Solving non-smooth convex problems
requires specialized techniques, of which saddle-point methods
[8] are probably the most popular. Generally, the solution is not
in a closed form anymore and instead an iterative procedure
is applied, which consists of multiple update equations and
some of them are non-linear.

In this work, we propose to solve the deconvolution problem
by combining the computational efficiency of Wiener filtering
and the superior restoration quality of non-smooth optimiza-
tion methods. We show that in the saddle-point methods
linear update equations can be interpreted as Wiener-like filters
and the non-linear update equations as soft thresholding. All
steps are implemented in the SD using only filtering and
element-wise operations, which naturally solves the problem
of boundary artifacts. The filters are learned by solving a
separate optimization problem on training data, which are
specifically generated for the learning procedure. We foresee
that the proposed algorithm easily extends to space-variant
deconvolution, demosaicing or super-resolution.

The paper is organized as follows. In Section II, learning
filters in the SD and the proposed algorithm is introduced.
Section III experimentally validates the algorithm performance
with respect to various conditions and Section IV concludes
the paper with a short discussion of possible extensions of the
algorithm.

II. METHODOLOGY

The discrete formation model considered in this work is a
standard convolution process

g = Hu+ n , (1)

where g is the blurred and noisy image, u is the unknown
sharp image, H(·) ≡ h ∗ · denotes a degradation operator
(matrix) performing convolution with some known PSF h, and
n ≈ N (0, σ2) is additive white Gaussian noise (AWGN) with
zero mean and variance Var(n) = σ2. We consider scalar-
valued digital images represented as column vectors u ∈ Rm
and g ∈ Rp. Pixels are indexed as (u)i. In practice, H models
‘valid’ convolution and thus m ≥ p. We define a discrete
gradient operator D : Rm → Rm×2, which in its simplest
form returns horizontal and vertical differences of pixels. It
is a multidimensional array (tensor) consisting of two matrix
components [Dx, Dy] that perform convolution with [1,−1]
and [1;−1] filters. The operator D can be more general and
have more components, e.g. diagonal differences for isotropic

behavior, or differences of pixels in a larger neighborhood
to better capture correlation of pixels. On the vector-valued
output of D, we define following norms:

‖Du‖2,1: Rm×2 → R ≡
∑

i

(
(Du)2i,1 + (Du)2i,2

)1/2
,

‖Du‖22,1: Rm×2 → R ≡
∑

i

(
(Du)2i,1 + (Du)2i,2

)
.

If ‘valid’ convolution is replaced with circular convolution
then (1) rewrites in the FD as

G = HU +N , (2)

where capital calligraphic letters denote the Fourier transform
F (·) of the corresponding function, e.g. G = Fg, H = Fh.

First let us formulate deconvolution as an optimization
problem with Tikhonov regularization

û = argmin
u

γ

2
‖Hu− g‖22 + ‖Du‖22,1 , (3)

where the norm of the first term is the classical `2-norm.
A closed-form solution exists in this case and if circular
convolution is assumed, the result in the FD has an explicit
form of linear filtering

Û = ŴG =
H∗

|H|2 + 1
γ |D|2

G , (4)

where Ŵ is a restoration filter in the FD. Note that since
D is a tensor then |D|2 = |Dx|2 + |Dy|2, where D(·)’s
are Fourier transforms of gradient operator components. The
power spectrum of D is identical to the spectrum of the
Laplacian operator, which is f2 with f being the spatial
frequency.

The solution Ŵ resembles a standard Wiener filter with a
modified power spectrum of the original image. Recall that the
Wiener filter is a linear minimum mean square error (LMMSE)
estimator defined as

Ŵ = argmin
W

Eu,n{‖WG − U‖22} , (5)

where Eu,n{·} denotes the expectation with respect to the
distribution of images and noise. The solution is the well-
known formula Ŵ = H∗/(|H|2 + Snn/Suu) where Suu
and Snn are power spectra of the original image and noise,
respectively, and are assumed to be known. The filter Ŵ in
(4), which is the solution of Tikhonov regularization, is thus
the Wiener filter for noise n ≈ N (0, 1/γ) and images with
the power spectrum Suu = 1/|D|2.

A. Learning restoration filters
To avoid the problem of boundary conditions in convolution,

it is preferable to have restoration filters in the SD. We discuss
two approaches. A straightforward one is to use the closed
form solution in (4) and estimate the corresponding SD filter
ŵ ∈ Rs for some given size s by solving

ŵ = argmin
w
‖Ŵ − Fw‖2

s.t. w ∈ Rs,
∑

i

(w)i = (Ŵ)0 , (6)



where the second equality constraint guarantees that the fil-
ter mean is preserved. The above constrained optimization
problem has a simple solution using the method of Lagrange
multipliers: transform Ŵ to the SD, crop it to size s, and
add an appropriate constant to preserve the original mean
value. However, there are two disadvantages of this approach.
First, the filter is optimal in the sense of `2-norm calculated
in the PSF domain, which has limited relation to the quality
of the restoration. Second, it can be used only if the explicit
form (4) in the FD exists. For example, if downsampling is
present in the formation model, such as in super-resolution or
demosaicing, the inversion must be done numerically and the
FD explicit form is not viable.

A remedy to the above problems is the second approach
that solves LMMSE (5) directly in the SD, see this approach
applied to demosaicing in [9]. We take an arbitrary image
ũ and perform type of spectral whitening by modifying the
image power spectrum to Sũũ = 1/|D|2. Then we generate a
blurred image g̃ following the formation model (1) with n ≈
N (0, 1/γ). The pair (ũ, g̃) is a training set, which we then use
in optimization (5) by replacing the expectation with a sample
mean. The complete algorithm is summarized in Alg. 1.

Algorithm 1 Learning restoration filters
Input: h – PSF, s – filter size, σ2 – noise variance, S – power
spectrum
Output: ŵ – filter of size s

1: Generate a training pair (ũ, g̃) :
2: Take some image ũ, modify its spectrum (Sũũ = S),

and generate a blurred image g̃ = h ∗ ũ + n with
n ≈ N (0, σ2).

3: Solve for w ∈ Rs:
4: ŵ = argmin

w
‖w ∗ g̃ − ũ‖22

B. Proposed iterative algorithm

Let us now reformulate deconvolution as an optimization
problem with total variation regularization [6]

û = argmin
u

γ

2
‖Hu− g‖22 + ‖Du‖2,1 . (7)

Saddle-point methods are frequently used for solving such
non-smooth convex problems. A popular choice is the ‘alter-
nating directions method of multipliers’ (ADMM) [10], which
is also considered here, however similar results are obtained
also for ‘primal-dual’ methods of Chambolle and Pock [11].
The ADMM introduces an auxiliary variable v ∈ Rm×2 and an
equality constraint v = Du, and rewrites (7) as a saddle-point
problem for an ‘augmented Lagrangian’:

min
u,v

γ

2
‖Hu− g‖22 + ‖v‖2,1 +

β

2
‖Du− v − a‖22,1 , (8)

where a ∈ Rm×2 is the Lagrange multiplier. Minimization
with respect to the image u leads to a linear problem and if

circular convolution is assumed, the result can be written in
the FD as

U =
H∗

|H|2 + β
γ |D|2

G +
D∗

|D|2 + γ
β |H|2

(V +A) (9)

The first term is the solution of Tikhonov regularization (4)
and is equivalent to Wiener filtering with PSF h, image
power spectrum 1/|D|2 and noise n ≈ N (0, β/γ). Alg. 1
is applied with parameters σ2 = β/γ and S = 1/|D|2 to
learn the corresponding filter in the SD. We refer to this
filter as ‘restoration filter’ w1 ∈ Rs. The second term can
be considered as another Wiener filtering of (v + a) with
vertical and horizontal filters [1,−1], image power spectrum
1/|H|2 and noise n ≈ N (0, γ/β). In this case, Alg. 1 is
unstable since the PSF power spectrum |H|2 typically contains
values close to zero in higher frequencies and setting the
image power spectrum to 1/|H|2 is not feasible. Instead,
we apply the approach in (6) and refer to the estimated
filters as ‘update filters’ w2 ∈ Rs×2. Note that w2 is a
vector-valued function and it consists of two filters one for
each component of the gradient operator D (or more if D
is more complex). Examples of restoration and update filters
for two different PSFs are shown in Fig. 2. The remaining
update equations for the auxiliary variable v and Lagrange
multiplier a are in accordance with the ADMM and consist
of simple element-wise operations. In the thresholding step,
the norm on the vector-valued image is calculated per pixel as
‖Du− a‖2 : Rm×2 → Rm ≡

(
(Du− a)2i,1 + (Du− a)2i,2

)1/2
and the multiplication of the vector-valued image (Du − a)
with the scalar-valued image max(·)/‖ · ‖2 is done element-
wise by replicating the scalar-valued image.

Algorithm 2 Iterative Wiener filtering and thresholding
(IWFT)
Input: g – blurred image, (w1,w2) – restoration and update
filters, and N – number of iterations
Output: u – sharp image

1: Initial estimation with restoration filter:
2: u1 ← w1 ∗ g
3: k ← N , a← 0, β ← 10max(g), u← u1
4: repeat
5: Element-wise soft thresholding:

6: v← (Du− a) ·
max

(
‖Du− a‖2 − 1

β , 0
)

‖Du− a‖2
7: a← a− Du+ v
8: Improve the image with update filter:
9: u← u1 + w2 ∗ (v + a)

10: k ← k − 1
11: until k = 0 or relative tolerance < 10−4

The whole algorithm, which we call the iterative Wiener
filtering and thresholding (IWFT) is summarized in Alg. 2.
The filters w1 and w2 are inputs to the algorithm and they are
precomputed for the given blur and noise level in the degraded
image g. The algorithm consists of three main steps: initial
filtering (line 2), element-wise computation (lines 6 and 7)



PSF restor. filter update filters

Fig. 2. Learned restoration and update filters for the Airy disk (top row) and
motion blur (bottom row). From left to right: blur (h), initial restoration filter
(w1), two update filters (w2) for horizontal and vertical differences. The filter
size (s) is 45× 45.

and update filtering (line 9). The first filtering step provides
the initial estimator of u, which corresponds to the first term
in (9). The remaining two steps are run iteratively. Update of v
is element-wise soft thresholding with the threshold 1/β. The
parameter β is the same used in the construction of filters w1

and w2. Experimentally we have validated that the best results
are achieved for β 10-times the range of intensity values, i.e.
image gradients below 1/10th of the intensity range are zeroed
out in v. The update of the sharp image u is performed by
filtering each component of the vector-valued image (v + a)
with the corresponding update filter from w2 and summing
the results over the components. The algorithm finishes after
satisfying one the convergence criteria: number of iterations
or relative tolerance between the new estimation and the old
one.

III. EXPERIMENTS

The proposed IWFT algorithm solves the deconvolution
problem (7) using the ADMM, which is guaranteed to con-
verge. The appealing property of the proposed method is that
all steps are implemented either by linear filters or simple
element-wise operations, and thus the problem of boundary
conditions in convolution is not present. The practical usage
of the method is however determined by several other factors:
by what margin the method outperforms the classical Wiener
filter, how many iterations are generally required, and what is
the minimum filter size to achieve these results. The following
experiment addresses these issues in question.

The method performance was evaluated with respect to
the filter size, number of iterations and noise level. The
standard peak signal-to-noise (PSNR) ratio in dB was used as
a performance measure. We also evaluated SSIM [12] and the
results were equivalent. We took sharp images, blurred them
with two types of blur – Airy disk modeling sensor blur and
motion blur modeling camera shake – and added noise with
SNR = 50, 30, 20dB. Figs. 1(a) and (b) illustrate an example
of the original image and the corresponding one blurred by
Airy disk, respectively. The restoration and update filters of
different sizes were learned for each PSF and noise level with
parameters γ = 105 (50dB), γ = 103 (30dB) and γ = 102

(20dB). Fig. 3 summarizes PSNR of the IWFT algorithm after
N = 0, 1, 5 and 15 iterations for all generated images. N = 0
means that only the initial filtering with the restoration filter
w1 in step 2 is performed and the result is equivalent to the
standard Wiener filter for the image power spectrum 1/|D|2.
In this case, strong ringing artifacts are present in the restored
images as illustrated in the first column of Fig. 4. A noticeable
improvement of the restored image both in the PSNR sense
and visually is achieved after one application of the update
filters w2 (see the 1st iteration in the second column of Fig. 4).
Additional iterations further improve the image, yet after 15
iterations (the last column) improvements are negligible.

The quality of restoration improves with the increasing
filter size as expected. When the Airy disk is used, PSNR
saturates for filter sizes of 45 × 45 in the case of 50dB.
When noise increases in the image, the restoration and update
filters perform more denoising than deconvolution and filters
of smaller size become sufficient. So in the case of 30dB
(20dB), PSNR saturates already for filter sizes of around
15×15 (10×10), however due to increased noise the achieved
PSNR is lower. When the motion blur of similar effective
size as the Airy disk is used, we notice that the maximum
achievable PSNR is much higher. This is in accordance with
the fact that Gaussian blurs (including Airy disk and out-of-
focus) are more destructive than motion blurs. Examples of
restored images for two noise levels and both blur types using
filter size 45× 45 are summarized in Fig. 5

IV. CONCLUSIONS

We have proposed a computationally efficient image restora-
tion algorithm IWFT consisting of only filtering and element-
wise operations, which makes it particularly suitable for im-
plementation in digital cameras. The algorithm is based on
the alternating directions method of multipliers and iteratively
solves a non-smooth convex problem of deconvolution with
total variation regularization using two linear filters. One
filter is for initial restoration and another for updating the
current estimate. Filters are implemented in the spatial domain
and learned by two proposed learning methods. Experiments
illustrate that the IWFT algorithm performs well for moderate
filter sizes and removes ringing artifacts after only a few
iterations in the case of realistic sensor and lens blurs.

A promising feature of the algorithm, which we plan to
investigate in the near future, is the capability to seamlessly
incorporate other restoration tasks. The algorithm for learning
restoration filters is sufficiently general to estimate filters that
in addition to deconvolution perform, e.g, demosaicing and
super-resolution. In this case, we can replace the restoration
filter for initial estimation with the newly learned filters and
the rest of the algorithm remains the same.
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Abstract—Images acquired with standard digital cameras have
Bayer patterns and suffer from lens blur. A demosaicking step
is implemented in every digital camera, yet blur often remains
unattended due to computational cost and instability of deblur-
ring algorithms. Linear methods, which are computationally less
demanding, produce ringing artifacts in deblurred images. Com-
plex non-linear deblurring methods avoid artifacts, however their
complexity imply offline application after camera demosaicking,
which leads to sub-optimal performance. In this work, we propose
a joint demosaicking deblurring and deringing network with a
light-weight architecture inspired by the alternating direction
method of multipliers. The proposed network has a transparent
and clear interpretation compared to other black-box data driven
approaches. We experimentally validate its superiority over state-
of-the-art demosaicking methods with offline deblurring.

Index Terms—Demosaicking, deblurring, deringing, ADMM,
CNN

I. INTRODUCTION

Data acquired by modern digital camera sensors are subject
to various types of signal degradation, such as lens and sensor
blur, aberrations, color filter array (CFA) and noise. To convert
the raw data from the imaging sensor into an image suitable
for the human visual system, it is necessary to correctly
process the acquired data, particularly by applying demo-
saicking and deblurring procedures. Sequential demosaicking
and deblurring provides sub-optimal solutions [1], yet they
are still used for their simplicity. Joint demosaicking and
deblurring was studied earlier [1]–[4] using traditional model-
based optimization approaches. More recent learning-based
methods focus only on joint demosaicking and denoising [5]–
[8] and disregard blur, which is present in DSLR and mobile
phone cameras even if the lens is in focus, see Fig. 2.

An important, yet often neglected, property of restoration
algorithms is their ability to run in the camera with limited
computational capacity, such as pixel-wise operations and
basic filtering. In this regard, a computationally efficient al-
gorithm for deconvolution was proposed in [9]. The algorithm
is based on the alternating direction method of multipliers
(ADMM) [10] and performs deblurring by iterative Wiener

This work was supported by Czech Science Foundation grant GA18-
05360S and by the Praemium Academiae awarded by the Czech Academy
of Sciences.

(a) Raw data (b) Demosaicking (c) Deringing
& Deblurring

Fig. 1. The proposed convolutional neural network joints three restoration
tasks: demosaicking, deblurring and deringing.

filtering and thresholding (IWFT). Removing blur with the
Wiener filter (ideal linear filter) produces mediocre results
in most of the cases due to ringing artifacts around edges
in the image. The IWFT algorithm instead uses two sets of
filters, one for the initial restoration (deblurring) and another
for the ringing artifact suppression (deringing). These filters
are precomputed offline for the given type of degradation, i.e.
blur and noise level.

Recent works have revealed that, with the aid of model-
based optimization methods, such as Primal-Dual or ADMM,
it is possible to design convolutional neural networks (CNN)
with clear interpretation [8], [11]. Inspired by these studies, we
design a light-weight CNN imitating the IWFT concept, which
is directly applicable to raw camera data (Fig. 1). The proposed
network – called D3Net – performs joint demosaicking, deblur-
ring and deringing. Network filters have clear interpretation
and they become learnable parameters, which is an important
advantage over the IWFT algorithm. A relatively small number
of training parameters allows us to efficiently train the network
by only a single pair of degraded and ground-truth images. We
perform quantitative and qualitative evaluation of D3Net and
compare it with state-of-the-art demosaicking methods with
and without offline deblurring.



a) b)

Fig. 2. Intrinsic camera blur (combination of sensor blur and lens aberrations):
a) DSLR, b) mobile phone.

II. PROBLEM FORMULATION
To solve the joint demosaicking-deblurring problem, one of

the most frequently used approaches in the literature relies on
the following linear observation model

g = SHu+ n , (1)

where g ∈ Rp is the blurred, noisy raw image and u ∈ Rm

is the unknown high-resolution sharp image. Both u and g
correspond to the vectorized forms of the images. H(·) ≡ h∗·
denotes a degradation operator (matrix) performing convolu-
tion with some known point spread function (PSF) h. For
simplicity, we employ a stationary blur model. S represents
the down-sampling operator, which models the particular CFA
pattern. It corresponds to a binary matrix which excludes
the spatial and channel location in the image where color
information is missing. We consider additive white Gaussian
noise n ≈ N (0, σ2) with zero mean and variance σ2.

To solve the ill-posed inverse problem, we adopt the opti-
mization problem with total variation regularization [12]:

û = argmin
u

γ

2
‖SHu− g‖22 + φ1

(
{Dju}

)
, (2)

where the norm of the first term is the classical `2-norm.
φs ({Dju}) =

∑
i(
∑

j [Dju]
2
i )

s/2 represents the regulariza-
tion function. Dj(·) ≡ dj ∗· denotes the j-th feature extraction
operator implemented as a convolution with the filter dj . For
example, if the set {dj} comprises only vertical and horizontal
differences, {Dju} corresponds to the discrete image gradient
and φ1 (·) is the sum of gradient magnitudes. Pixels are
indexed as [u]i. Parameter γ is is the weight between the data
term and regularization.

A popular choice for solving such non-smooth convex
problems is ADMM [10]. The method introduces an auxiliary
variables vj ∈ Rm and an equality constraints vj = Dju,
and rewrites (2) as a saddle-point problem for an ‘augmented
Lagrangian’:

min
u,{vj}

γ

2
‖SHu− g‖22 + φ1

(
{vj}

)
+
β

2
φ2
(
{Dju− vj − aj}

)
,

(3)
where aj ∈ Rm represents the Lagrange multiplier.

In order to solve joint demosaicking-deblurring minimiza-
tion problem (3) as well as to deal with ringing artifacts

Algorithm 1 Joint demosaicking, deblurring and deringing
Input: g – blurred image, N – number of iterations,
{rk} – set of restoration filters, {wj} – set of update filters
Output: u – sharp image

1: Initial estimation with restoration filter:
2: ur ← P ({rk ∗ g}) [rConv]
3: k ← N , {aj} ← 0, β ← 10max(g),
u← ur

4: repeat
5: ṽj ← dj ∗ u ∀j [gConv]
6: Soft thresholding:

7: vj ← SoftThr

(
ṽj − aj ,

1

β

)
∀j [Soft]

8: Update the Lagrange multiplier:
9: aj ← aj + (vj − ṽj) ∀j [Add]

10: Improve the image with update filter:
11: u← ur +

∑

j

wj ∗ (vj + aj) [uConv]

12: k ← k − 1
13: until k = 0

after deconvolution, we imitate IWFT concept and propose
computationally efficient algorithm summarized in Alg. 1.
See Algorithm 2 in [9] for more details.

ADMM sequentially performs alternating minimization
with respect to u and {vj}. Minimization over vj leads to
soft thresholding with the threshold 1/β (line 7). Parameter β
is set to 10-times the range of intensity values of the blurred
image g. In the case of minimization over u (line 11), the
update step can be written as

u = P ({rk ∗ g}) +
∑

j

wj ∗ (vj + aj) , (4)

where {rk} and {wj} are the sets of restoration and update
filters, respectively. Operator P performs pixel shuffling to
assemble the final RGB image. These filters are inputs to the
algorithm and they are precomputed offline, similarly as in
[9], for the given type of degradation, i.e. blur, CFA pattern
and noise level. The Lagrange multiplier aj is updated by the
term (vj − dj ∗ u) (line 9).

III. PROPOSED NETWORK ARCHITECTURE

Alg. 1 consists of only filtering and element-wise opera-
tions and therefore can be used to design the architecture of
the light-weight convolutional neural network. As a result,
all convolutional filters in the algorithm becomes learnable
parameters.

The architecture of our proposed network D3Net is shown
in Fig. 3. The first filtering step (Alg. 1 - line 2) provides the
initial estimator of reconstructed image u, which corresponds
to the demosaicking and deblurring tasks. The remaining steps
in Alg. 1 (line 5 - 12) are run iteratively and perform the
ringing artifact suppression (deringing task). Experimentally
we have validated that three iterations provide balanced results
between ringing artifact suppression and over-regularization.
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Fig. 3. Proposed network architecture of the D3Net. See Alg. 1 for the interpretation of individual blocks.

The restoration layer (rConv) is therefore followed by three
update layers consisting of four operations: gradient filtering
(gConv), soft thresholding with the threshold 1/β (Soft),
element-wise operation (Add) and update convolutional layer
(uConv).

The input to our network is the degraded blurred image
g (Fig. 1a) separated into four channels according to the
Bayer CFA pattern. The network can be modified to any other
CFA (e.g. X-Trans). The restoration layer (rConv) consists
of convolution with 12 four-channel filters {rk} followed by
pixel shuffling P which results in the restored RGB image
ur (Fig. 1b) with three times more data than g. An example
of one out of 48 restoration filters for demosaicking and
deconvolution is in Fig. 4. Filters are initialized using the
result of IWFT algorithm (Fig. 4a) and further improved
(Fig. 4b) by training with the traditional back-propagation
process. The difference between the restoration filter before
and after the training is demonstrated in Fig. 4c. Filter size is
the hyper parameter of the network and is set, in our example,
to 25×25. The human visual system is more sensitive to high
frequencies in the luminance channel, therefore restored RGB
image is transformed to a YCbCr color space and all update
layers are applied only on luminance channel of the restored
image ur. The complexity of update layers depends on the
number of gradient filters. In our implementation, we use 4
filters in the convolutional layers (gConv) which correspond
to horizontal, vertical and two diagonal difference operators
(Fig. 5a). Consequently, there are four update filters for each
update layer (Fig. 6a). Gradient and update filters are also
initialized by IWFT. Their modification through the learning
procedure is more significant than in the case of restoration
filters. The final output of the network (Fig. 1c) is the re-
constructed image u, which is the restored luminance channel
with chrominance channels transformed back to RGB color
space. In total, the proposed network contains 36 convolutions
in seven convolutional blocks.

a) b) c)

Fig. 4. An example of restoration filter (25x25) for demosaicking and
deblurring Bayer data distorted by out-of-focus blur. There are 48 restoration
filters in layer rConv. a) initialization from IWFT, b) learned by D3Net,
c) difference. Blue-white-red colormap represents numbers from -1 to 1.

a) b) c)

Fig. 5. An example of horizontal, vertical and two diagonal gradient filters
(3x3) in layer gConv for deringing images distorted by out-of-focus blur.
a) initialization from IWFT, b) learned by D3Net, c) difference. Blue-white-
red colormap represents numbers from -1 to 1.

a) b) c)

Fig. 6. An example of 4 update filters (25x25) in layer uConv for deringing
images distorted by out-of-focus blur. The update filters are related to gradient
filters. a) initialization from IWFT, b) learned by D3Net, c) difference. Blue-
white-red colormap represents numbers from -1 to 1.



IV. EXPERIMENTS

We use Pytorch as our framework for implementing D3Net.
First, we demonstrate the improvement of results from our
network over augmented IWFT. In addition, we focus on
deringing effect of the proposed network as well as to show
the influence of different blurs on final reconstruction. Then
we compare our results with sequential demosaicking and
deconvolution methods. Finally, we test our network on real
images. Throughout the experiments, two objective quality
measures were used: Peak Signal to Noise Ratio (PSNR) and
the Structural Similarity Index Measure (SSIM).

A. IWFT vs. D3Net

For training and evaluation of the proposed network, we
used publicly available Kodak PhotoCD image dataset. One
image from the set was used as a training set and the remaining
23 images formed a validation set. In this experiment, input
images were randomly cropped into patches of size 200×200
pixels. We converted the Kodak images into blurred Bayer
images by performing an image degradation process (1).
Blurred Kodak images were down-sampled with the Bayer
pattern GRBG and finally Gaussian noise was added.

Batch size was set to 4. The network was optimized with
the mean-squared-error loss. All weights were initialized by
filters of the IWFT algorithm, computed similarly as in [9].
Optimization was carried out using the stochastic gradient
descent algorithm with learning rate 0.01 and momentum
0.9. Training was super fast with only one epoch, which
corresponds to approximately 3.5 minutes on a GeForce RTX
2080 Ti.

We tested both methods, IWFT and D3Net, on out-of-focus
blur represented by circular PSF with radius 5 and noise levels
30dB and 40dB. Size of the restoration and update filters were
the same and ranged from 5 × 5 to 35 × 35. Size of the
gradient filters was 3×3. Fig. 7 demonstrates the improvement
of the results using the learning-based approach. It can be
concluded that proposed network gives significantly better
PSNR results than IWFT for all filter sizes and noise levels.
For the given out-of-focus blur with radius 5, the performance
of both methods flattens out for filter sizes of 25 × 25 and
more.

B. Deringing effect

As discussed in Sec. III, update filters change through
training more than restoration filters. Therefore we analyzed
the performance of update layers, mainly their deringing
effect. To train our network, images from Kodak dataset were
degraded in the same way as in the Sec. IV-A. This time
we used two types of blur: out-of-focus blur with radius 5
and Gaussian blur with variance 3. To form training set with
582930 degraded and ground-truth image pairs, we used 18
images from Kodak dataset and cropped them into patches of
size 100 × 100. The remaining six Kodak images composed
validation set. We considered Gaussian noise 40dB and filter
sizes 25× 25. Other parameters remained the same as in the

Fig. 7. Average PSNR performance of the proposed D3Net (solid) and IWFT
(dashed) [9] with respect to the size (s) of the restoration and update filters
({rk}, {wj}). Out-of-focus blur and noise levels with 30dB and 40dB are
considered. Proposed network outperforms IWFT for all filter sizes.

previous case. Training of our network lasted approximately
9 hours on a GeForce RTX 2080 Ti.

Tabs. I and II) compares average PSNR and SSIM of
the reconstructed images for D3Net, standard demosaicking
method [13], Wiener filter and IWFT algorithm in the case of
out-of-focus blur and Gaussian blur, respectively.

TABLE I
OUT-OF-FOCUS BLUR: AVERAGE PSNR AND SSIM RESULTS FOR

DIFFERENT RECONSTRUCTION METHODS.

Method PSNR [dB] SSIM
Demosaicked [13] 24.69 0.757
Wiener 26.10 0.874
IWFT 25.82 0.823
D3Net (proposed) 29.94 0.926

TABLE II
GAUSSIAN BLUR: AVERAGE PSNR AND SSIM RESULTS FOR DIFFERENT

RECONSTRUCTION METHODS.

Method PSNR [dB] SSIM
Demosaicked [13] 24.53 0.752
Wiener 24.34 0.780
IWFT 25.27 0.856
D3Net (proposed) 26.89 0.870



(a) Raw data (b) Demosaicked (c) Wiener (d) IWFT (e) D3Net (f) Ground-truth
[13] (proposed)

Fig. 8. Visual results from the Kodak dataset. (a) degraded data by out-of-focus blur, CFA Bayer pattern and Gaussian noise with 40dB, (b) applying only
demosaicking [13], (c) Wiener filtering, (d) joint demosaicking and deblurring using IWFT method [9], (e) joint demosaicking and deblurring using our
proposed network, (f) original sharp image. Our proposed method D3Net retain fine details as opposed to IWFT method that over-smooths highly textured
areas while suppresses ringing artifacts when only Wiener filtering is considered.

Wiener filter is equivalent to initial restoration in the IWFT
algorithm (i.e. layer rConv in D3Net without learning). It
is a popular deconvolution method, however, as a linear
filter, the estimated image exhibits ringing artifacts around
edges (Fig 8c). Non-linear update steps of IWFT algorithm
performed well in suppressing ringing artifacts, hence results
were visually better. However, such reconstructed images were
over-smoothed (Fig. 8d). This eventually led to lower PSNR
and SSIM values for IWFT than for Wiener filter when out-
of-focus blur was considered (Tab. I). It was not the case for
images blurred by Gaussian PSF, although images remained
too smoothed as can be seen in Fig. 9d. Images corrected by
D3Net did not suffer from these problems. In Fig. 8e details
of the wall are still recognizable as opposed to IWFT. Overall,
the proposed network was able to recover more realistic details
than the optimization-based IWFT as well as produce images
with less visually disturbing artifacts than Wiener-like filters.

C. Joint vs. sequential approach

This experiment presents the comparison of the proposed
joint approach with sequential demosaicking and deblurring
procedures and evaluates the effect of training the proposed
network on more than one image pair. The network trained
in Sec. IV-B using 18 Kodak images is denoted D3Net v2
and the network trained on a single pair of degraded and
ground-truth image is D3Net v1. We evaluated our networks
on the McMaster dataset [14] and compared them with re-
cent demosaicking methods FlexISP [3], DeepJoint [15] and
JointADMM [5] followed by robust non-blind deconvolution
method (non-blind deconvolution step in [16]). The kernel
part of those algorithms, including all parameters, remains the
same as their authors provided. Applying offline deblurring is
identified by the asterisk symbol *.

An interesting result is that the reconstructed image pro-
vided by standard IWFT as well as Wiener filter (Fig. 10e-
f) looks visually better and retain relatively fine details as
opposed to the other sequential demosaicking and deblurring



(a) Raw data (b) Demosaicked (c) Wiener (d) IWFT (e) D3Net (f) Ground-truth
[13] (proposed)

Fig. 9. Visual results from the Kodak dataset. (a) degraded data by Gaussian blur, CFA Bayer pattern and Gaussian noise with 40dB, (b) applying only
demosaicking [13], (c) Wiener filtering, (d) joint demosaicking and deblurring using IWFT method [9], (e) joint demosaicking and deblurring using our
proposed network, (f) original sharp image.

methods, yet they received worse PSNR values (Tab. III).
From Tab. III we observe that D3Net yields substantially

better results than all other tested methods. Surprisingly, even
network trained on a single image pair (D3Net v1) outperforms
sequential demosaicking and deblurring. Our methods leads to
better and more visually pleasing results, as it can be seen in
Fig. 10l.

TABLE III
OUT-OF-FOCUS BLUR: AVERAGE PSNR AND SSIM RESULTS FOR THE

DIFFERENT RECONSTRUCTION METHODS.

Method PSNR [dB] SSIM
JointADMM 23.06 0.742
DeepJoint 23.40 0.751
FlexISP 23.37 0.763
Wiener 23.57 0.826
IWFT 24.07 0.843
JointADMM* 25.44 0.839
DeepJoint* 25.62 0.846
FlexISP* 26.48 0.882
D3Net v1 27.61 0.887
D3Net v2 28.91 0.912

D. Results on real image

We tested D3Net on real data captured by LG Nexus 5
mobile phone camera (8 MP, f/2.4, 4 mm, 1/6 sec, RGGB).
The mobile phone processed the raw data and stored the image
as JPEG. We analyzed cropped patch with the size of 449×433
which is shown in Fig 11a. In the inset of the figure, zoomed
minipatch of size 46×46 is presented. Notice the demosaicking
artifacts in the image.

Intrinsic camera blur kernels for different regions of the
input image can be estimated in advance according to [1].
To train our network we artificially blurred test images from
Kodak dataset with PSF (Fig. 2b) corresponding to the selected
patch of the captured image. We considered additive Gaussian
noise 35 dB. Eventually, blurred Kodak images were down-
sampled with the Bayer pattern RGGB. In order to prevent
over-fitting of the network, size of the restoration and update
filters were set to 3×3. To form training and validation set,
Kodak images were cropped into patches of size 210×310.
Other parameters were set as in IV-B. Training of our network
lasted approximately 5 minutes on a GeForce RTX 2080 Ti.

The raw image as returned by the camera API was processed
through D3Net and the output is seen in Fig 11b. By compar-
ison, the result of our method reveals greater detail, looks
visually more pleasing and does not suffer from disturbing
demosaicking artifacts. Small size (3×3) of restoration and
update filters makes it particularly suitable for implementation
in small embedded system like digital cameras.



(a) Raw data (b) JointADMM (c) DeepJoint (d) FlexISP (e) Wiener (f) IWFT

(g) Ground-truth (h) JointADMM* (i) DeepJoint* (j) FlexISP* (k) D3Net v1 (l) D3Net v2
(proposed) (proposed)

Fig. 10. Comparison of our joint demosaicking deblurring and deringing network D3Net with sequential demosaicking and deblurring methods (FlexISP [3],
DeepJoint [15] and JointADMM [5] followed by robust non-blind deconvolution method [16]). Evaluated on McMaster dataset [14]. Symbol * means that
offline deblurring was applied. D3Net v1 was trained using a single pair and D3Net v2 was trained on 18 pairs of degraded and ground-truth images from
Kodak dataset.

a)

b)

Fig. 11. Image reconstruction of real data captured by LG Nexus 5 phone
camera. a) Demosaicking processed by phone, b) D3Net.

V. CONCLUSIONS

In this work, we presented a novel portable CNN for
joint demosaicking, deblurring and deringing of raw image
data. The light-weight structure of the network makes it
particularly suitable for implementation in digital cameras.
Architecture of the proposed network is inspired by the
model-based optimization algorithm IWFT. We adopted the
IWFT idea, extended it to perform also demosaicking, and
designed it as a CNN. Results demonstrate that filters used
for image reconstruction can be further improved by adopting
the learning-based approach. We have shown, that our joint
approach outperforms state-of-the-art demosaicking methods
with offline deblurring.
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ABSTRACT

Three-dimensional fluorescence microscopy often suffers
from anisotropy, where the resolution along the axial direc-
tion is lower than that within the lateral imaging plane. We
address this issue by presenting Dual-Cycle, a new framework
for joint deconvolution and fusion of dual-view fluorescence
images. Inspired by the recent Neuroclear method, Dual-
Cycle is designed as a cycle-consistent generative network
trained in a self-supervised fashion by combining a dual-view
generator and prior-guided degradation model. We validate
Dual-Cycle on both synthetic and real data showing its state-
of-the-art performance without any external training data.

Index Terms— Light-sheet fluorescence microscopy,
Dual-view imaging, deep learning, image deconvolution.

1. INTRODUCTION

Three-dimensional fluorescence imaging, such as light-sheet
fluorescence microscopy (LSFM) [1,2] is an essential tool for
revealing important structural information in biological sam-
ples. However, it is common for 3D fluorescence microscopy
to suffer from spatial-resolution anisotropy, where the axial
direction is more blurry than the lateral imaging plane. Such
anisotropy is due to several factors, including the diffraction
of light and axial undersampling.

The spatial-resolution anisotropy is often addressed using
image deconvolution methods, such as Richardson-Lucy al-
gorithm [3, 4]. However, achieving isotropic resolution from
a single 3D volume is an ill-posed inverse problem. The
problem can be simplified by using multiview microscopy
systems, such as dual-view inverted selective plane illumina-
tion microscope (diSPIM) [5,6], equipped with classical joint
multi-view deconvolution and fusion methods [5, 7, 8].

Deep learning (DL) has emerged as an alternative to the
classical deconvolution algorithms [9–11]. Neuroclear [10]

This work was supported in part by the Czech Science Foundation grant
GA21-03921S, the NSF CAREER award CCF-2043134, the Fulbright com-
mission under the Fulbright-Masaryk award, and by the Beckman Center for
Advanced Light-Sheet Microscopy at Washington University in St. Louis.

Fig. 1. Dual-Cycle reconstructs a 3D image with isotropic
resolution given two views, A and B, of the same sample.

is a recent self-supervised DL framework that uses cycle-
consistent generative adversarial network (CycleGAN) [12]
to improve the axial resolution from a single 3D input image
without any knowledge of the point spread function (PSF).
However, in many cases, the experimental PSF can be read-
ily measured using either fluorescent beads [8, 13] or small
structures within samples [14], or derived theoretically [15].

In this paper, we present Dual-Cycle as an improvement
to Neuroclear that extends it into a dual-view self-supervised
model-based framework. The inclusion of an additional view
as input improves the reconstruction capability, while the ad-
ditional prior on estimated PSFs allows our model to account
for the expected degradation process. We experimentally val-
idate Dual-Cycle on synthetic and real data showing that it
can outperform Neuroclear as well as traditional dual view
reconstruction algorithms.
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of the generator based on U-Net. e) Degradation forms two paths each consisting of blurring with known PSF followed by the
deep linear generator. f) PatchGAN-based [16] discriminators work on 2D slices of input 3D volumes.

2. FORWARD PROBLEM

We focus on images recorded with single-plane illumination
microscopes (SPIMs) [17] in a dual-view setup (diSPIM,
Fig. 2a). Data is acquired by two cameras, A and B, with an
ideal relative rotation of 90 degrees. The image formation
process (forward model) can be represented as the following
linear observation model:

gA = AAHAu+ n,

gB = R⊥ABHBu+ n.
(1)

where gA, gB , and u correspond to the vectorized forms
of deskewed 3D volumes, measured by camera A (View A),
camera B (View B), and the original high-resolution 3D vol-
ume (Fig. 1). HA (resp. HB) denote 3D convolution along
the axial direction z (resp. x) with some known PSF hA (resp.
hB). To model the mismatch from an ideal dual view setup,
we include operators AA/B , representing 3D affine transfor-
mation. We assume a coordinate system of unknown image
u to be the same as gA and that the ideal rotation of View B
with respect to View A is 90 degrees around axes y, denoted
as R⊥. We omit subsampling in the axial directions by in-
terpolating measurements to have voxels of equal size. In the
general case, we consider additive noise n.

Problem 1 leads to an inherently ill-posed inverse prob-
lem. To solve it, we adopt and extend the approach in [10].

3. INVERSE PROBLEM

Our proposed framework is illustrated in Fig. 2c. In our setup,
View A has a higher resolution in the xy plane and is blurred
in the axial direction z, while View B has a higher resolution
in the yz plane and is blurred in the axial direction x. Our goal
is to reconstruct the original 3D volume with an isotropic res-
olution. We focus mainly on joint deconvolution and fusion
with additional fine registration. Our framework is based on
a CycleGAN approach illustrated in Fig. 2b and consists of
two cycle-consistency paths, hence the name Dual-Cycle. It
is worth mentioning that Dual-Cycle does not require any ex-
ternal training data beside the test object to be reconstructed.

The two views of the 3D volume are used as input for the
3D U-net-based generator (Fig. 2d). The result of the gen-
erator is one 3D image representing the original 3D volume
with isotropic resolution. To achieve this, we employ two
sets of discriminators A1 and B1 (Fig. 2f). Discriminators
A1 distinguish between xy planes of View A and xy and xz
planes of the reconstructed volume. Discriminators B1 distin-
guish between yz planes of View B and yz and xz planes of
the reconstructed volume. To regularize and stabilize learn-
ing, the dual-cycle consistency is imposed. Therefore, the
reconstructed image is degraded along two paths to imitate
the forward problem (1). Consequently, Degradation A and
B, Fig. 2e, consist of 3D convolution with given PSFs hA



and hB followed by a deep linear generator (DLG) to address
ideal model mismatch caused by affine operators A. For the
blind case, when PSFs are unknown, degradation can be per-
formed by DLGs only. Eventually, two other sets of discrim-
inators A2 and B2 are added to map the distribution of corre-
sponding planes of input View A/B onto generated View A/B.
All discriminators are PatchGAN-based [16] and work on 2D
slices of analyzed 3D volumes (Fig. 2f). Pixel-wise L1 loss
between View A/B and generated View A/B is added to the
GAN objective function to enforce cycle consistency.

4. EXPERIMENTAL VALIDATION

We now present the numerical evaluation of Dual-Cycle on
synthetic and real light-sheet data.

4.1. Synthetic data

We first illustrate possible improvements due to our dual-view
framework over the single-view Neuroclear [10]. Addition-
ally, we compare our network with other commonly used
multi-view reconstruction techniques diSPIMFusion [9] and
MIPAV-generatefusion [6]. The performance was measured
using the peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM).

We consider a dataset of six generated 3D volumes (120
× 120 × 120 voxels), shown in Fig. 3. We drew 30-50 lines
randomly in space and applied 3D elastic grid-based deforma-
tion. These volumes were treated as original ground truth vol-
umes. All images were scaled to have values in the range 0-1.
To obtain degraded volumes View A/B, we used the degrada-
tion process (1), without noise and 90-degree rotation. The
original volume was blurred in the z direction for View A and
in the x direction for View B (blurring by Gaussian kernel
with a standard deviation in range 2-4). Further, we applied
random affine transformations to simulate the imperfection of
the registration method. Relatively small mismatch (repre-
senting by A in eq. (1)) is implemented as transformation
of 3D points p as follows: p′ = (I + N)p + t, where I is
identity matrix and N is random matrix with elements from a
uniform distribution over [−0.0025, 0.0025], and t is random
translation vector sampled from a uniform distribution over
[−0.05, 0.05]3.

Except for Neuroclear, all methods use prior knowledge
about the PSFs and both views as input. Visual comparison
of reconstructed volumes corresponding to the first 3D vol-
ume of the synthetic dataset is in Fig. 4. All methods can
effectively perform the reconstruction, yet the improvement
of Dual-Cycle compared to single view baseline is visually
noticeable and corroborated by an increase in SSIM. Table
1 summarizes the average PSNR/SSIM results of the tested
methods. Overall, Dual-Cycle improves over the second best
methods by 1.49 db (PSNR) and 0.017 (SSIM).

Fig. 3. The set of six generated 3D volumes used in experi-
ments.

Fig. 4. Comparison of MIPAV-generatefusion [6], diSPIM-
Fusion [9], Neuroclear [10], and Dual-Cycle applied on the
views A and B generated from the first 3D volume in the syn-
thetic dataset in Fig. 3. Visualized XY, XZ, and YZ images
represent central cross-sections of the corresponding cubes in
xy, xz, and yz planes. Each reconstruction is labeled with its
SSIM value with respect to the original volume.



Fig. 5. Image reconstruction from real diSPIM data from [9] using reconstruction methods MIPAV-generatefusion [6], diSPIM-
Fusion [9], Neuroclear [10], and the proposed Dual-Cycle framework.

Implementation of Dual-Cycle was based on the Neuro-
clear and CycleGAN PyTorch framework; we used Adam
optimizer and learning rate set to 0.0001. The network was
initialized with weights pre-trained on the first volume. The
training of the first (resp. following volumes) lasted approxi-
mately 12 hours (resp. 3-6 hours) using NVIDIA RTX A5000.

4.2. Real data

We also tested reconstruction on diSPIM data from [9]. Data
was preprocessed using the Fiji software [18]. The prepro-
cessing involved denoising of both views and performing ini-
tial coarse registration of View B on View A. For both views:
the minimum brightness value was truncated at value 78, vol-
umes were normalized to 0-1 range, and were interpolated to
have voxel sizes equal to (0.1625 µm)3. For the registration
of view B on view A, we used Fiji plugin Fijiyama [19]. Im-
ages were cropped to 120 × 120 × 120 voxels and tested with
the same methods as in Sec. 4.1. Visual comparison of re-
constructed volumes is presented in Fig. 5. The improvement
of Dual-Cycle reconstruction over the Neuroclear is indicated
via cross sections. Overall, Dual-Cycle achieves comparable
or better performance relative to the state-of-the-art methods.

Table 1. The average PSNR/SSIM results of the blurred
view A/B, MIPAV-generatefusion, diSPIMFusion, Neuro-
clear and Dual-Cycle on the testing 3D volumes.

Method PSNR [dB] SSIM
View A 29.32 0.929
View B 29.13 0.927
MIPAV-generatefusion [6] 29.13 0.931
diSPIMFusion [9] 28.55 0.943
Neuroclear [10] 29.79 0.942
Dual-Cycle (our) 31.28 0.960

5. CONCLUSION

We presented Dual-Cycle, a self-supervised framework for
dual-view fluorescence image reconstruction. The proposed
method extends the recent Neuroclear method based on the
CycleGAN framework. Compared to Neuroclear, Dual-Cycle
includes two perpendicular views of the sample as input and
uses prior knowledge on the estimated PSFs as a part of the
degradation process within the framework. We have experi-
mentally shown that Dual-Cycle achieves the state-of-the-art
performance on synthetic and real data. While we only ex-
plored the dual-view setup in this work, our framework can
be readily expanded into the multiple-view regime.
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ABSTRACT

We introduce NeRD, a new demosaicking method for gen-
erating full-color images from Bayer patterns. Our approach
leverages advancements in neural fields to perform demo-
saicking by representing an image as a coordinate-based
neural network with sine activation functions. The inputs
to the network are spatial coordinates and a low-resolution
Bayer pattern, while the outputs are the corresponding RGB
values. An encoder network, which is a blend of ResNet
and U-net, enhances the implicit neural representation of
the image to improve its quality and ensure spatial con-
sistency through prior learning. Our experimental results
demonstrate that NeRD outperforms traditional and state-of-
the-art CNN-based methods and significantly closes the gap
to transformer-based methods.

Index Terms— Demosaicking, neural field, implicit neu-
ral representation.

1. INTRODUCTION

Raw data acquired by modern digital camera sensors is sub-
ject to various types of signal degradation, one of the most
severe being the color filter array. To convert the raw data
(Fig. 1a) into an image suitable for human visual perception
(Fig. 1b), a demosaicking procedure is necessary [1].

Two main categories of image demosaicking exist: model-
based and learning-based methods. Model-based methods,
such as bilinear interpolation, Malvar [2], or Menon [3], are
still widely used, but they fail to match the performance of
recent deep learning-based approaches using deep convolu-
tional networks (CNN) [4, 5, 6] or Swin Transformers [7].

Recently, Transformer networks have seen remarkable
success in computer vision tasks and have become a state-of-
the-art approach in demosaicking. However, a new paradigm
in deep learning, Neural Fields (NF) [8], is gaining attention
due to its comparable or superior performance in several com-
puter vision tasks [8, 9, 10, 11, 12, 13, 14]. The basic idea
behind NF is to represent data as the weights of a Multilayer
Perceptron (MLP), known as implicit neural representation.

This work was supported in part by the Czech Science Foundation grant
GA21-03921S, the Praemium Academiae awarded by the Czech Academy of
Sciences, and the Fulbright commission under the Fulbright-Masaryk award.

Encoder

a) Bayer pattern b) RGB imageMLP

Fig. 1. An illustration of demosaicking using coordinate-
based Multilayer Perceptron and local encoding technique.

NF has been applied in various domains and applications
including Neural Radiance Fields (NeRF) [9] which achieved
state-of-the-art results in representing complex 3D scenes.
NeRV [11] encodes entire videos in neural networks. The
Local Implicit Image Function (LIIF) [12] represents an im-
age as a neural field capable of extrapolating to 30 times
higher resolution. SIREN [13] uses a sinusoidal neural rep-
resentation and demonstrates superiority over classical ReLU
MLP in representing complex natural signals such as images.

Prior information from training data can be encoded into
neural representation through conditioning (local or global)
using methods such as concatenation, modulation of acti-
vation functions [15], or hypernetworks [14]. For example,
CURE [10], a state-of-the-art method for video interpolation
based on NF, uses an encoder to impose space-time consis-
tency using local feature codes.

NF has also been used in image-to-image translation tasks
such as superresolution, denoising, inpainting, and generative
modeling [8]. However, to the best of our knowledge, no NF
method has been proposed for demosaicking.

In this paper, we present NeRD, a novel approach for
image demosaicking based on NF. The proposed method em-
ploys a joint ResNet and U-Net architecture to extract prior
information from high-resolution ground-truth images and
their corresponding Bayer patterns. This information is then
used to condition the MLP using local feature encodings. The
proposed approach offers a unique and innovative solution for
image demosaicking.
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Fig. 2. The overall architecture of NeRD. Encoder consisting of 8 residual blocks and U-net architecture generates encoding
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coordinates x = (x, y) concatenated with the corresponding local encoding vector ξx are transformed into RGB value using a
multilayer perceptron with 5 hidden layers each with 256 output channels, siren activation functions, and two skip connections.

2. PROPOSED METHOD

NeRD converts spatial coordinates and local encodings into
RGB values. The local encodings are generated by an en-
coder that integrates consistency priors in NeRD. The overall
architecture of NeRD is depicted in Fig. 2.

The core of NeRD is a fully connected feedforward net-
work NΦ : (ξx,x) → n with 5 hidden layers, each with
256 output channels and sine activation functions. Φ de-
notes the network weights. The input is a spatial coordinate
x = (x, y) ∈ R2 and local encoding vector ξx. The output
is a single RGB value n = (r, g, b) ∈ R3. The SIREN archi-
tecture [13] was chosen for its ability to model signals with
greater precision compared to MLPs with ReLU. There are
two skip connections that concatenate the input vector with
the output of the second and fourth hidden layers.

Using the MLP without local encoding ξx leads to sub-
optimal demosaicking results due to the insufficient informa-
tion contained in the training image. This is demonstrated by
the result in Fig. 3-NeRD.0, where the reconstructed image is
the output of the SIREN model trained only on original input
Bayer pattern in self-supervised manner. The lack of spatial
consistency in these results highlights the need for additional
prior information in the form of spatial encoding, which is
why we utilize an encoder.

The encoder provides local feature codes ξx for a given
coordinate x and its architecture is shown in the first row of
Fig. 2. The Bayer pattern is processed through a combined

network that incorporates 8 residual blocks (using the EDSR
architecture [16]) and 4 downsampling and 4 upsampling lay-
ers (U-Net architecture [17]) connected by multiple skip con-
nections. The result is a global feature encoding H×W×128,
where H and W denote the height and width of the initial
Bayer pattern in pixels. The local encoding ξx is extracted
from the global encoding as a 5 × 5 region centered at x,
which is then flattened into a 3200-dimensional feature vec-
tor. The architecture of the encoder is adopted from [10].

The final RGB image is produced by independently re-
trieving the RGB pixel values from NeRD at the coordinates
specified by the input Bayer pattern.

3. EXPERIMENT

We numerically validated NeRD on standard image datasets.
Experiments also include an ablation study highlighting the
key components of the proposed architecture and compar-
isons with state-of-the-art methods.

3.1. Dataset and Evaluation Metrics

A training set was created by combining multiple high-
resolution datasets, such as DIV2K [18], Flickr2K [16], and
OST [19], resulting in a total of 12 000 images. During each
epoch, 10 000 randomly cropped patches of size 200 × 200
and corresponding Bayer patterns (GBRG) were generated.
The Kodak and McM [20] datasets were used for testing.



Fig. 3. The ablation study of NeRD. The original image is from DIV2K dataset. ”ReLU” and ”Siren” models show the
implicit neural representation of the original image using MLP with ReLU and sine activation functions, respectively. These
models were trained in a self-supervised manner to fit the original image. ”ReLU.pe” stands for ”ReLU” model with additional
positional encoding in the form of Fourier feature mapping. ”NeRD.0” model is identical to ”Siren” model but is only trained
using the input Bayer pattern. ”NeRD” is the proposed demosaicking method, while ”NeRD.ns” represents the proposed
architecture without skip connections in the MLP. Each image is labeled with its PSNR value with respect to the original image.

The evaluation was performed using Peak Signal to Noise
Ratio (PSNR) and the Structural Similarity Index Measure
(SSIM).

3.2. Training Configuration

The training was conducted using an Nvidia L40s GPU. All
INR models were optimized using the Mean Squared Error
loss function, and the Adam optimizer was used with β1 = 0.9
and β2 = 0.999. The initial learning rate was set to 0.0009,
and a step decay was applied, reducing the learning rate by
0.95 every epoch consisting of 10 000 iterations. The patch
size was set to 200× 200 and the batch size was 5.

3.3. Ablation Study

MLP and activation functions. RGB images can be
represented as the weights of a fully connected feedforward
neural network. This representation is achieved by train-
ing an MLP in a self-supervised manner to fit the original
image. However, the usage of standard ReLU activation
functions in MLPs produces unsatisfactory results, as shown
in Fig. 3-ReLU. To significantly improve reconstruction,
Fourier feature mapping of input spatial coordinates can be
used (see Fig. 3-ReLU.pe). This technique is referred to as

“positional encoding”. Nonetheless, an even better outcome
can be achieved by replacing ReLU with sine functions, also
known as SIRENs. They demonstrate the capability of MLPs
as image decoders and hold promise for demosaicking appli-
cations. SIREN architecture has the capacity to model RGB
images with great precision. As demonstrated in Fig. 3-Siren,
the SIREN with 5 hidden layers, each with 256 neurons,
achieved a PSNR of 50.7 dB when trained for just 1000
iterations to fit the original image.

Encoder. The naive approach of decoding RGB im-
ages from Bayer patterns using SIREN architecture fails as
it loses two-thirds of the original information, as shown in
Fig. 3-NeRD.0. To improve the demosaicking capability of
the MLP, prior information must be incorporated through an
encoder. This encoder learns prior information across various
training image pairs and conditions the MLP with local en-
codings. The effectiveness of the encoder is demonstrated in
Fig. 3-NeRD, which shows the results of demosaicking using
the NeRD architecture described in Sec. 2.

Skip Connections. The integration of encoding into the
MLP can be achieved through various methods. However,
methods such as modulation of activation functions or the use
of hypernetworks present challenges in terms of paralleliza-
tion. Hence, we utilized a method of concatenation, where the



(b) Ground-truth (c) Bilinear (d) Matlab (e) Menon
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Fig. 4. A visual comparison of NeRD and the current state-of-the-art methods on an example from the Kodak dataset. The
visual differences are highlighted by close-ups, which correspond to the red box in the original image. Although NeRD exhibits
slightly inferior visual performance compared to RSTCANet, it outperforms traditional methods in terms of reconstruction ac-
curacy (indicated by the magenta arrow) and avoids over-smoothing details, as seen with the DeepDemosaick method (indicated
by the cyan arrow).

coordinates and feature vectors are combined at the input and
later concatenation of the input with the second and fourth
hidden layers is performed using skip connections. The sig-
nificance of incorporating skip connections into the MLP is
illustrated in Fig. 3-NeRD.ns (no-skip). This figure demon-
strates a degradation in both the quality of the reconstruction
and the PSNR value when these connections are omitted.

3.4. Comparison With Existing Methods

The evaluation of the proposed NeRD demosaicking algo-
rithm was performed on the McM and Kodak datasets, which
were resized and cropped to 200 × 200 px. A comparison of
NeRD with traditional demosaicking algorithms and state-of-
the-art methods is presented in Table 1 in terms of average

Table 1. Average PSNR/SSIM obtained by NeRD and the
current state-of-the-art methods on the McM* and Kodak*
datasets (*resized and cropped to 200 × 200 px). Bold and
underline highlights the highest and second highest values,
respectively. Note the superior results of NeRD over the
CNN-based and traditional methods. Only RSTCANet,
which is based on transformers, has slightly higher scores.

Method McM* [20] Kodak*
PSNR/SSIM PSNR/SSIM

Bilinear 27.15/0.912 28.01/0.894
Matlab (Malvar) [2] 30.54/0.923 33.52/0.957

Menon [3] 31.40/0.918 35.20/0.968
DeepDemosaick [4] 33.31/0.942 37.76/0.976

RSTCANet [7] 37.77/0.978 40.84/0.988
NeRD 36.18/0.969 39.07/0.984

PSNR and SSIM values calculated from the demosaicked im-
ages. The results show that NeRD outperforms traditional
methods and the CNN-based DeepDemosaick [4], but falls
slightly behind the transformer-based RSTCANet [7].

A visual comparison of the demosaicked images is pre-
sented in Fig. 4. The figure highlights differences between
NeRD and the other methods and provides insights into their
performance. One notable characteristic of NeRD is that it
avoids over-smoothing details, unlike the DeepDemosaick [4]
method, as indicated by the cyan arrow in the Fig. 4g. Fur-
thermore, NeRD outperforms traditional methods in terms of
preserving fine details and avoiding unpleasant artifacts, as
indicated by the magenta arrow in the Fig. 4d.

4. CONCLUSION

This paper presents a novel demosaicking algorithm, NeRD,
that leverages the recent class of techniques known as Neural
Fields. The ablation study results emphasize the significance
of incorporating an encoder and skip connections within the
MLP, which results in significant improvement over tradi-
tional techniques and outperforms the CNN-based Deep-
Demosaick method in preserving fine details while avoid-
ing undesirable artifacts. Although NeRD shows slightly
lower visual performance compared to the transformer-
based RSTCANet, it still demonstrates remarkable accu-
racy in terms of reconstruction. Future research can focus
on enhancing NeRD through fine-tuning using input Bayer
pattern-specific loss functions and integrating Transformer
networks or ConvNeXt into the encoder. In addition, expand-
ing the training set by more diverse datasets can improve the
prior. Albeit NeRD may not attain the performance level of
Transformer-based demosaicking, our contribution broadens
the range of domains where Neural Fields can be applied.
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A R T I C L E I N F O A B S T R A C T 

Keywords:DemosaickingImplicit neural representationInverse problems
We propose a novel approach to enhance image demosaicking algorithms using implicit neural representations (INR). Our method employs a multi-layer perceptron to encode RGB images, combining original Bayer measurements with an initial estimate from existing demosaicking methods to achieve superior reconstructions. A key innovation is the integration of two loss functions: a Bayer loss for fidelity to sensor data and a complementary loss that regularizes reconstruction using interpolated data from the initial estimate. This combination, along with INR’s inherent ability to capture fine details, enables high-fidelity reconstructions that incorporate information from both sources. Furthermore, we demonstrate that INR can effectively correct artifacts in state-of-the-art demosaicking methods when input data diverge from the training distribution, such as in cases of noise or blur. This adaptability highlights the transformative potential of INR-based demosaicking, offering a robust solution to this challenging problem.

1. Introduction
Digital camera sensors typically capture raw image data through a Color Filter Array (CFA), resulting in sub-sampled color information that requires reconstruction through a process known as demosaicking. Tra-ditional demosaicking algorithms, such as bilinear interpolation, Malvar [1], and Menon [2], offer computational efficiency but are prone to arti-facts like color Moiré, zippering, and false color patterns. These artifacts degrade image quality by introducing undesirable visual effects. Moiré patterns appear as repetitive interference patterns in areas with high-frequency textures. Zippering manifests as jagged edges along sharp transitions. False color patterns distort natural color representation, of-ten due to processing errors during demosaicking.More advanced approaches have aimed to mitigate these issues by in-tegrating demosaicking with other image processing tasks. For instance, joint demosaicking and denoising or deblurring methods [3–8] employ model-based optimization techniques to achieve better reconstruction quality.Recent advancements in deep learning have significantly enhanced the performance of demosaicking algorithms [9–15]. These techniques have set new benchmarks by leveraging Convolutional Neural Networks (CNNs) or Transformers to reduce artifacts and improve the fidelity of reconstructed images. However, these methods often struggle when faced with input data that diverge from their training distribution, such 

* Corresponding author.E-mail address: kerepecky@utia.cas.cz (T. Kerepecký).

as images affected by blur, common in both DSLR and mobile phone cameras (Fig. 1), even when the lens is in focus.In response to these challenges, we propose a novel deep learning-based approach named INRID (Implicit Neural Representation for Image Demosaicking), which leverages Implicit Neural Representations (INR) [16] to enhance image reconstruction in both traditional and state-of-the-art demosaicking methods. By representing each individual image through the weights of a Multilayer Perceptron (MLP), our approach provides a more flexible and powerful reconstruction.INRID reconstructs the image by adapting to the specific character-istics of two key inputs: the raw Bayer data and the initial demosaicked image from methods such as Malvar or Menon. A Bayer loss function enforces fidelity to the original raw sensor data, minimizing the mean squared error (MSE) between the reconstructed Bayer pattern and the raw measurements. Simultaneously, the complementary pixel values — those missing in the Bayer pattern — are reconstructed by aligning them with the initial estimate while ensuring consistency with the raw Bayer data. This combined process enables INRID to capture fine image de-tails and correct residual artifacts, that traditional methods often leave unaddressed.For state-of-the-art deep learning methods, INRID extends beyond refinement to address out-of-distribution scenarios, such as blurred or noisy inputs. By incorporating the forward degradation process—e.g., simulating blur or noise—directly into the optimization, INRID aligns 

https://doi.org/10.1016/j.dsp.2025.105022



Digital Signal Processing 159 (2025) 105022

2

T. Kerepecký, F. Šroubek and J. Flusser 

Fig. 1. Intrinsic camera blur (a combination of sensor blur and lens aberrations, present even when the lens is in focus): a) DSLR, b) mobile phone. These intrinsic blur kernels are about 7x7 pixels in size for 16 MPx images. Interpolation was used to magnify the blur kernels for visual presentation.
the reconstruction with both the degraded Bayer data and the initial estimate. This approach ensures robust adaptation to challenging con-ditions, recovering high-frequency details and reducing artifacts. As a result, INRID significantly enhances demosaicking performance, even when the input data diverge from the training distribution.The rest of the paper is organized as follows: Section 2 reviews re-lated work. Section 3 describes the proposed methodology, including the inverse problem and definition of loss functions used for training. Section 4 presents experimental results that demonstrate our approach in enhancing existing methods. Section 5 discusses the limitations of our work and potential future directions for improvement. Finally, Section 6offers concluding remarks.
2. Related work
2.1. Image demosaicking

Traditional demosaicking methods have predominantly relied on in-terpolation techniques, which, despite their computational efficiency, are prone to introducing artifacts, especially in regions with high-frequency content. Early methods, such as bilinear interpolation, pro-vided a simple yet effective approach for reconstructing missing color information [17]. The work by Malvar et al. [1] improved upon these techniques by introducing a gradient-corrected bilinear interpolation method, optimized using a Wiener filtering approach, which aimed to reduce the visibility of common artifacts. Menon et al. [2] further ad-vanced the field by incorporating directional filtering and a posteriori decision-making, which improved edge preservation and reduced color artifacts. However, these methods struggled with handling complex tex-tures and often produced noticeable artifacts, such as color Moiré pat-terns and zipper effects.Optimization-based methods tackle demosaicking by formulating it as an inverse problem and integrating regularization terms to enhance reconstruction quality. For instance, the multiframe demosaicking and super-resolution method by Farsiu et al. [18] applies a maximum a pos-teriori (MAP) estimation framework. This approach effectively reduces artifacts and addresses degradations such as noise and blur, while re-quiring increased computational complexity compared to interpolation-based methods.The advent of deep learning has led to significant advancements in demosaicking. One notable approach, commonly named DeepDemo-saick, is the method proposed by Kokkinos and Lefkimmiatis [10], which introduces a deep convolutional residual network designed to jointly perform demosaicking and denoising. This approach leverages a cas-cade of convolutional layers to model the underlying patterns in raw sensor data and predict a high-quality full-resolution RGB image. The network is inspired by optimization strategies from classical image reg-ularization methods and is trained end-to-end on a dataset of mosaicked and ground-truth images. This design enables the model to capture com-

plex pixel-level dependencies, resulting in superior color reconstruction and reduced artifacts compared to previous methods.Another state-of-the-art method, RSTCANet [11], currently a lead-ing method in the field, builds upon the Swin Transformer framework with the introduction of Residual Swin Transformer Channel Attention Blocks. This advanced design captures both spatial and channel-wise dependencies more effectively, thanks to its hierarchical structure and shifted windows, while the residual connections allow for deeper net-work architectures by mitigating the vanishing gradient problem. RST-CANet excels in preserving fine details and handling complex textures, delivering high-quality demosaicking results across various datasets.These deep learning-based methods, including RSTCANet and Deep-Demosaick, are pre-trained on large datasets to learn a mapping from mosaiced inputs to full-color images. While effective on images similar to the training data, their reliance on pre-training limits their ability to generalize to out-of-distribution data, such as images with blur or noise not represented in the training set. Pre-trained models cannot easily adapt to variations not seen during training, which can lead to subopti-mal performance in challenging scenarios.In contrast, our hybrid approach employs an INR that is optimized individually for each input image. Instead of relying on pre-trained weights, we solve an optimization problem over the network parame-ters specific to each image, rather than over pixel values as in traditional methods. This per-image optimization allows our model to adapt to the unique characteristics of each image, providing robustness to out-of-distribution data such as noisy or blurred images. By optimizing over network parameters, our method can capture fine image details and cor-rect artifacts more effectively.
2.2. Implicit neural representation

INRs have emerged as a powerful tool in computer vision, repre-senting images and 3D shapes continuously through fully connected feed-forward networks. Early work, such as DeepSDF [19], showcased the effectiveness of ReLU-based MLPs for shape representation.For images, INR maps spatial coordinates to RGB values using an MLP, enabling continuous image representation, unlike conventional pixel grids. This approach allows high-quality reconstructions, even from sparse or incomplete data.However, ReLU-based networks, while foundational, struggle to cap-ture fine details, particularly high-frequency information, due to their piecewise linear structure.To address this limitation, Fourier feature mapping, also known as positional encoding, was introduced [20]. This technique involves map-ping the input spatial coordinates into a higher-dimensional space using sinusoidal functions, which helps the MLP capture finer details and im-proves the reconstruction quality. This approach was popularized by works such as NeRF (Neural Radiance Fields) [21], where it was used to represent 3D scenes with high fidelity.Building on these advancements, SIREN (Sinusoidal Representation Networks) [22] was introduced, which replaced ReLU with sine activa-tion functions. SIRENs demonstrated the ability to model high-frequency details with greater precision, as sine functions naturally encode os-cillatory patterns that are prevalent in image data. This architecture significantly improved the performance of MLPs as image decoders, en-abling them to achieve state-of-the-art results in various tasks, including image superresolution and inpainting.Recently, WIRE (Wavelet Implicit Representations) [23] has pushed the boundaries of INR even further by introducing wavelet-based ac-tivation functions. WIRE leverages the multi-resolution properties of wavelets, allowing the MLP to model both coarse and fine details si-multaneously.INCODE [24] further advances INR by introducing a harmonizer net-work that dynamically adjusts the activation functions based on prior knowledge. This innovation allows INCODE to adaptively fine-tune key parameters like amplitude and frequency of sinusoidal activation func-
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tions, enabling the MLP to better capture details and broader signal patterns.Ramasinghe and Lucey [25] proposed additional activation functions such as Gaussian, Laplacian, and so-called Quadratic to broaden the family of INRs, offering alternatives for capturing fine details without relying on periodic functions.However, for our demosaicking approach, SIREN and INCODE re-main particularly promising due to their sinusoidal activation functions, which are well-suited for interpolating missing data and capturing the complex signal patterns required in this problem.
2.3. Implicit neural representation for image demosaicking

In our previous work, Neural field-based Demosaicking (NERD) [26], we extended the application of INR to the domain of demosaicking. NERD introduced a method that combined ResNet [27] and U-Net [28] architectures to condition the MLP using high-resolution image features extracted from ground-truth images and their corresponding Bayer pat-terns. This approach demonstrated the potential of INR in handling the challenging task of demosaicking by leveraging the strengths of coordi-nate based neural networks.Compared to NERD, the approach presented in this paper signifi-cantly reduces computational complexity by eliminating the encoder component while also leveraging the strengths of existing demosaicking methods. Rather than merely introducing a new demosaicking tech-nique, the proposed hybrid framework is designed to substantially en-hance reconstruction capabilities and improve the robustness of both traditional and state-of-the-art methods.
3. Problem formulation

In the context of digital image processing, the forward problem in-volves modeling the degradation process that occurs during image ac-quisition with a digital camera. This process encompasses blurring due to the camera optical system, subsampling caused by the CFA, com-monly implemented as a Bayer pattern, and noise introduced by the sensor. The forward model for Bayer measurement 𝑏 is expressed as:
𝑏 = 𝑆𝐵𝐻𝑢+ 𝑛𝐵 (1)
where 𝑢 ∈ ℝ𝑀 represents the vectorized form of the unknown high-resolution sharp image, 𝐻(⋅) ≡ ℎ ∗ ⋅ denotes the channel-dependent blurring operator, where ℎ is the Point Spread Function (PSF) estimated from calibration data and ∗ indicates convolution. 𝑛𝐵 ≈ (0, 𝜎2𝐵) rep-resents additive white Gaussian noise with zero mean and variance 𝜎2𝐵 , and 𝑆𝐵 is the down-sampling operator corresponding to the Bayer pat-tern (e.g. RGGB), resulting in the observed mosaiced image 𝑏 ∈ ℝ𝑃 , where 𝑀 = 3𝑃 .Additionally, for the complementary pixel values, we can hypothe-size a forward model:
𝑐 = 𝑆𝐶𝐻𝑢+ 𝑛𝐶 (2)
where 𝑆𝐶 is the down-sampling operator corresponding to the remain-ing 2/3 of the original pixel values that are complementary to the Bayer pattern (therefore 𝑐 ∈ℝ2𝑃 ). The term 𝑛𝐶 ≈ (0, 𝜎2𝐶 ), with variance 𝜎2𝐶 , represents additive noise associated with these complementary pixels.
3.1. Inverse problem

The inverse problem seeks to reconstruct the high-resolution image 
𝑢 from a degraded observation 𝑏. Our approach incorporates not only the forward model for the Bayer measurement 𝑏 (Equation (1)) but also a second forward model for the complementary pixel values 𝑐 (Equation (2)). Since 𝑐 is not directly available, we estimate a rough reconstruction 
𝑢0 =𝐷(𝑏) using an initial demosaicking method 𝐷. From this reconstruc-tion, the complementary pixel values are approximated as 𝑐 ≈ 𝑆𝐶𝑢0. 

The inverse problem is inherently ill-posed due to the combined effects of blur, noise, and incomplete color information, requiring a robust op-timization strategy.In our framework, the inverse problem is formulated as training an INR, 𝑢𝜓 , to reconstruct the high-resolution image 𝑢 by parameteriz-ing it as a continuous function modeled by the weights 𝜓 of an MLP. Optimization of parameters 𝜓 ensures that the outputs of 𝑢𝜓 , when passed through the degradation models, match both the observed Bayer measurement 𝑏 and the complementary pixel estimates 𝑐. Furthermore, added regularization promotes smoothness and edge preservation. This optimization is carried out for each individual image using stochastic gradient descent or its variants, with backpropagation applied to mini-mize loss functions derived from the forward models of 𝑏 and 𝑐.Formally, the optimization problem is expressed as:
�̂� = argmin

𝜓

{
𝛼Bayer

(
�̂�, 𝑏

)
+ 𝛽Demo

(
𝑐,𝑆𝐶𝑢0

)

+ 𝛾(
𝑢𝜓

)}
,

(3)

where 𝑢�̂� is the final reconstruction. �̂� = 𝑆𝐵𝐻𝑢𝜓 represents the pre-dicted INR that is subject to the given degradation and corresponds to the Bayer pattern. To perform the degradation we sample 𝑢𝜓 at all pixel locations and consider its vectorized form. The Bayer loss Bayer(�̂�, 𝑏)ensures fidelity to the original sensor data. Additionally, 𝑐 = 𝑆𝐶𝐻𝑢𝜓denotes the degraded INR at complementary pixel locations, which lack direct Bayer measurements. The complementary loss, Demo, minimizes the error between 𝑐 and the corresponding values in the initial demo-saiced image 𝑢0. The overall optimization is balanced by the weighting factors 𝛼, 𝛽, and 𝛾 , which control the contributions of the Bayer loss, complementary loss, and the Total Variation (TV) regularization (𝑢𝜓 ).In our ablation study for selecting optimal weighting factors (Sec-tion 4.4), 𝛽 is fixed at 1 while 𝛼 is varied to balance the Bayer and com-plementary losses. The parameter 𝛾 , when set to values between 10−6and 10−5, is used specifically for joint demosaicking, and deblurring tasks, as described in Section 4.6. The specific values of these weighting factors are further detailed in the experimental section.
3.2. Bayer loss

The Bayer loss Bayer is defined as the MSE between the predicted Bayer image and the observed (inherently blurred) mosaiced image 𝑏:
Bayer

(
�̂�, 𝑏

)
= 1 
𝑃
‖𝑆𝐵𝐻𝑢𝜓 − 𝑏‖22. (4)

3.3. Complementary loss
The complementary loss Demo is calculated as the MSE between the predicted complementary pixel values and the corresponding values in the initial demosaiced (inherently blurred) image 𝑢0 :

Demo
(
𝑐,𝑆𝐶𝑢0

)
= 1 

2𝑃
‖𝑆𝐶𝐻𝑢𝜓 −𝑆𝐶𝑢0‖22. (5)

3.4. Total variation regularization
We apply Color TV regularization (𝑢𝜓 ) to ensure smoothness while preserving edges [29]. Total variation measures the gradient magnitude across the image, penalizing rapid intensity changes to reduce noise and retain key features. In INR models, the continuous image representation allows gradient computation at any point using automatic differentia-tion, enabling efficient total variation minimization. In our framework, TV regularization proves especially beneficial for tasks such as joint de-mosaicking and deblurring, where it not only stabilizes the reconstruc-tion process but also helps preserve important image details, making it particularly impactful for processing real-world images.
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Table 1Configurations for INR Models.

Parameter Gauss ReLU FFN SIREN WIRE INCODE 
Activation Gaussian ReLU ReLU Sine Wavelet Sine Modulation — — Positional Encoding (Gaussian) — — Harmonizer (ResNet34) Hidden Layers 5 5 5 5 5 5 Neurons per Layer 256 256 256 256 256 256 Learning Rate 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 7 × 10−4 1 × 10−4Batch Size 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128 128 × 128 Trainable Parameters 330499 330499 461059 330499 330499 568359
Special Parameters — — — 𝜔first = 30, 

𝜔hidden = 30
𝜔 = 30, 
𝜎 = 10

𝑎 = 0.1993, 
𝑏 = 0.0196, 
𝑐 = 0.0588, 
𝑑 = 0.0269

Table 2Image Reconstruction With INR: Average PSNR values for image representation using different INR models on the Kodak dataset, across various image sizes and training iterations. Bold and underline highlight the highest and second highest values, respectively.
INR Model Original size (768 × 512) 1/2 Resize (384 × 256) 1/4 Resize (192 × 128) 

500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 
Gauss 31.01 33.68 35.99 34.26 38.97 43.25 60.24 90.23 80.24ReLU 21.92 22.52 23.07 21.79 22.82 23.61 21.60 23.22 24.60 SIREN 37.89 40.29 41.92 39.62 46.46 49.88 44.50 51.73 60.52 WIRE 37.32 40.51 42.65 41.71 43.04 46.79 56.73 66.70 74.74 FFN 32.83 34.98 36.88 35.15 40.05 43.76 37.60 45.29 52.35 Incode 39.65 41.35 42.87 52.78 50.21 51.93 72.23 79.72 90.94

Fig. 2. Illustration of INRID: The proposed approach performs demosaicking us-ing an implicit neural representation 𝑢𝜓 ∶ ℝ2 → ℝ3, optimized by minimizing the mean squared error 𝐵𝑎𝑦𝑒𝑟 between the reconstruction 𝑢𝜓 and the Bayer measurement 𝑏, as well as between the reconstruction 𝑢𝜓 and the initial demo-saicked image 𝑢0 (𝐷𝑒𝑚𝑜). The INR consists of five layers, each with 256 neurons, and employs sinusoidal activations to effectively capture high-frequency im-age details. Unlike traditional activation functions such as ReLU or sigmoid, sinusoidal activations enable a more expressive representation, improving the reconstruction of fine structures and textures critical for accurate demosaicking (see ablation study in Section 4.3).
We call the algorithm that solves (3) INRID, standing for Implicit Neural Representation for Image Demosaicking. Fig. 2 provides a con-ceptual overview of the INRID framework. It highlights the key compo-nents: the raw Bayer measurement 𝑏, the initial demosaicked image 𝑢0, and the learned implicit representation 𝑢𝜓 . This high-level visualization is intended to help readers grasp the primary relationships and flow of the optimization process. 

4. Experimental results
To solve the minimization in (3), we employ a self-supervised ap-proach where the INR is trained directly on the degraded image data 

without requiring ground truth high-resolution images. This enables the INR model to reconstruct the high-resolution image solely based on the observed mosaiced image and complementary pixel information.We begin by demonstrating image representation using INR and comparing various architectures. Next, we show that using the Bayer loss only for image representation exceeds basic demosaicking ap-proaches such as nearest neighbor and bilinear interpolation, and in some cases outperforms traditional methods like Malvar and Menon. We then illustrate how the combination of Bayer and complementary loss within the INRID framework significantly improves reconstruction per-formance and exceeds all traditional methods. Furthermore, we show-case the joint demosaicking, denoising, or deblurring capabilities of INRID, enhancing state-of-the-art demosaicking methods such as Deep-Demosaick and RSTCANet. Finally, we demonstrate the effectiveness of our approach on real-world data from mobile phone cameras.
4.1. Experimental setup

Table 1 summarizes the hyperparameter configurations for all INR models used in our experiments. Each model consists of five hidden lay-ers with 256 neurons per layer. The Gauss and ReLU models employ Gaussian and ReLU activation functions, respectively, while the Fourier Feature Networks (FFN) utilize Gaussian positional encoding with ReLU activations. The SIREN model uses sine activation functions, parame-terized by frequency terms 𝜔 for the first and hidden layers. The WIRE model incorporates a wavelet activation function, characterized by a fre-quency term 𝜔 and a scale term 𝜎, which enable the balance of global and local signal representation. The INCODE model builds on a modi-fied SIREN architecture, augmented with a harmonizer network based on the ResNet34 [27] backbone. The specific parameters, including fre-quency and scale terms for SIREN, WIRE, and INCODE, are summarized in Table 1 and detailed in their respective original works [22–24].The training was conducted using an Nvidia L40s GPU. All models were optimized using the MSE loss function, and the Adam optimizer, with decay rates for gradient and squared gradient averages set to 0.9 and 0.999, respectively. A learning rate scheduler was applied to gradu-ally reduce the learning rate during training. The initial learning rate was set to 0.0001 for most models, except for WIRE, which used a 
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Table 3Image Reconstruction With INR: Average PSNR values for image representation using different INR models on the McM dataset (500×500 version), across various image sizes and training iterations. Bold and underline highlight the highest and second highest values, respectively.

INR Model Original size (500 × 500) 1/2 Resize (250 × 250) 1/4 Resize (125 × 125) 
500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 

Gauss 29.65 32.75 36.14 36.50 45.51 51.32 86.48 113.20 117.79ReLU 20.81 21.67 22.47 19.82 21.14 22.31 18.61 20.49 22.34 SIREN 39.10 41.79 43.61 39.19 46.08 51.71 44.07 52.38 62.06 WIRE 37.28 41.05 44.17 46.10 49.58 47.83 53.00 58.83 65.72 FFN 35.16 37.67 39.47 35.89 41.24 46.02 32.70 43.02 52.30 Incode 41.56 43.17 44.64 64.79 67.54 53.96 107.24 116.99 117.33
learning rate of 0.0007. Batch sizes were fixed at 128 × 128 for all ex-periments.To evaluate the performance of the INR models, we tested on the Ko-dak [30] and McMaster [31] datasets. The evaluation metrics included Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Mea-sure (SSIM).The source code used in this study is publicly available at https://github.com/kereptom/inrid2024.
4.2. Image reconstruction with INR

In the image reconstruction experiment, we evaluated the perfor-mance of different INR architectures in representing images. In other words, we trained INR models in a self-supervised manner to fit the original image. This corresponds to setting 𝛼 = 1, 𝛽 = 2, and 𝛾 = 0 in Equation (3), with the initial reconstruction 𝑢0 replaced by the original ground truth pixel values 𝑢. We set 𝛽 = 2 because the complementary loss involves twice as many pixels as the Bayer loss.Specifically, we tested six different INR architectures across three image sizes and three different numbers of iterations, calculating aver-age PSNR results for both the Kodak and McM datasets. The results, as shown in Tables 2 and 3, indicate that the INR model with ReLU activa-tion consistently performed the worst across all conditions. On average, INCODE delivered the best results in nearly all scenarios. SIREN and WIRE were strong contenders, especially at the original size and half size. While both Gauss and FFN showed moderate results overall, FFN performed slightly better at the original size, whereas Gauss was particu-larly effective for smaller images. SIREN, although not always achieving the highest scores, produced stable and reliable results across different image sizes and iteration counts, making it a strong performer in a wide range of conditions.The visual demonstration in Fig. 3 supports these findings, showing the reconstruction of Kodak image #23 at its original size after 2000 it-erations. The ReLU INR model shows significant blurring, particularly in areas with fine textures. In contrast, the other methods produce vi-sually pleasing and accurate reconstructions, with INCODE, WIRE, and SIREN standing out for their near-perfect results (see Fig. 3, especially in the close-ups).We also analyzed the progression of PSNR values with extended training on the McM dataset (500 × 500 version) beyond 2000 iter-ations, as shown in Fig. 4. The results reveal continued improvement across all models, but with a diminishing rate of gain after 2000 iter-ations. Models such as INCODE, WIRE, and SIREN exhibit high perfor-mance and retain their advantage. Given this diminishing improvement, it becomes important to consider the trade-off between further enhanc-ing reconstruction quality and the associated computational cost, which will be discussed further in Section 5.Although WIRE showed competitive performance, we encountered instability with the learning rate, making its training less reliable com-pared to other models. Based on these results, we chose to proceed with two INR architectures for further experiments: INCODE, which domi-nated in most scenarios, and SIREN, which consistently performed well 

Fig. 3. Image reconstruction using different INR architectures on an example from the Kodak dataset. The Bayer Pattern (top left) shows the raw subsam-pled data for demonstration purposes. All INR models were trained in a self-supervised manner to fit the original image (top right). ReLU INR struggles to model high-frequency details, resulting in noticeable blurring, especially in re-gions with fine textures, such as the bird’s feathers. In contrast, INCODE, SIREN and WIRE architectures provide the most visually pleasing reconstructions, cap-turing details with higher fidelity. This example illustrates the results after 2000 training iterations for each INR architecture. The corresponding average PSNR values for the entire dataset are reported in Table 2, 4th column.
and demonstrated stability across various conditions; and also included FFN and Gauss for reference.
4.3. Image demosaicking with INR

Following our image representation study, we extended our exper-iments to image demosaicking using INR architectures, focusing solely on Bayer measurements, which is equivalent to setting 𝛼 = 1, 𝛽 = 0, and 
𝛾 = 0 in Equation (3). The results, shown in Tables 4 and 5, indicate a decline in PSNR values as image size decreases, contrasting with the full 
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Table 4Image Demosaicking With INR: Average PSNR values for image demosaicking using various INR models on the Kodak dataset. The models were overfitted on Bayer measurements across different image sizes and training iterations, as opposed to Table 2, where all image pixels were taken into account. In this setup, minimization was performed using the objective in (3), where the complementary loss was neglected (𝛽 = 0) and 𝛾 = 0. Bold and underline highlight the highest and second highest values, respectively.

INR Model Original size (768 × 512) 1/2 Resize (384 × 256) 1/4 Resize (192 × 128) 
500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 

Gauss 25.66 26.76 27.75 16.23 16.04 17.91 14.23 14.43 14.29 SIREN 34.21 34.11 33.96 31.25 31.19 30.93 31.11 31.38 31.33FFN 31.36 33.13 34.41 28.75 29.93 30.22 25.34 25.16 25.40Incode 33.38 33.64 33.95 26.54 28.23 30.10 20.28 20.37 20.47 
Table 5Average PSNR values for image demosaicking using various INR models on the MCM dataset, following the same setup as described for Table 4. Bold and underline highlight the highest and second highest values, respectively.

INR Model Original size (500 × 500) 1/2 Resize (250 × 250) 1/4 Resize (125 × 125) 
500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 500 Iter 1000 Iter 2000 Iter 

Gauss 21.83 22.48 23.57 13.71 13.82 14.13 12.30 12.27 12.23 SIREN 34.87 34.75 34.71 31.49 31.63 31.48 29.48 29.88 29.88FFN 32.26 33.15 33.75 25.34 26.29 26.64 19.09 20.19 20.33Incode 33.99 34.65 35.16 21.99 22.89 25.49 15.45 15.58 15.50 

Fig. 4. Image Reconstruction With INR: Average PSNR values with increasing training iterations for various INR models on the McM dataset (500 × 500 ver-sion). The plot demonstrates continued improvement in PSNR with additional iterations, though the rate of gain decreases over time for all models.
image representation results in the previous section. This decline is due to the reduced availability of ground truth pixels and increased impact of CFA degradation in smaller images.Interestingly, while INCODE excelled in full image representation, the SIREN architecture outperforms it in the demosaicking task, partic-ularly with smaller images. SIREN’s superior PSNR values highlight its robustness in scenarios requiring significant interpolation.The visual demonstration is presented in Figs. 5 and 6. In the orig-inal size (Fig. 5), only Gauss exhibits improper reconstruction. When resized to half the original size (Fig. 6), SIREN begins to handle the re-construction more effectively, producing a more colorful image. As the image size is reduced further, SIREN becomes the only model capable of adequately managing the interpolation.The naive approach to INR-based demosaicking explained in this section, especially when using the SIREN architecture, surpasses basic algorithms like nearest neighbor and bilinear interpolation (see Table 6). As will be seen in the next section, it also highlights the potential of SIREN for boosting traditional demosaicking methods when initial in-formation about missing pixels is provided.

Fig. 5. Image Demosaicking With INR: Demosaicking results for Kodak image #23 (original size) using various INR architectures trained on Bayer measure-ments (Fig. 3, top-left). INCODE, SIREN, and FFN outperform the Gaussian model after 2000 iterations. PSNR values are listed in Table 4, 4th column.
4.4. Enhancing image demosaicking with INR

We now take full advantage of the INRID framework by incorpo-rating both Bayer and complementary loss functions. This experiment corresponds to setting 𝛽 = 1 in Equation (3), while varying 𝛼 to balance the contributions of the Bayer and complementary losses. We keep the TV regularization turned off.The inclusion of complementary loss leverages initial demosaicking reconstructions, regularizing the problem and, with the aid of Bayer loss, ultimately boosting the demosaicking capabilities of the original methods. This approach helps the INR model to learn from not only the available Bayer data but also the estimated values from the initial de-mosaicking process, thus improving the overall reconstruction quality.Optimal Alpha Selection: To determine the optimal value for 𝛼, we conducted experiments using various demosaicking methods. Fig. 7shows the average PSNR and SSIM from the McM dataset as a function of 
𝛼 for traditional demosaicking methods such as Malvar and Menon. The results indicate that, while the complementary loss plays a crucial role 
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Fig. 6. Image Demosaicking With INR: Kodak image #23 resized to 384 × 256. SIREN INR produces the best visual outcome after 2000 iterations, while Gaus-sian INR shows significant artifacts. PSNR values are in Table 4, 7th column.

Fig. 7. Optimal Alpha Selection: Average PSNR and SSIM vs Alpha for SIREN-based demosaicking over the McM dataset (500 × 500). The plots show the performance of SIREN models to improve Malvar and Menon demosaicking methods as a function of 𝛼. The solid lines represent SIREN results, while the dotted lines show the baseline performance. The results indicate that for 𝛼 > 1, our INRID framework enhances demosaicking quality, with peak improvements around 𝛼 = 60, as seen in both PSNR and SSIM. As 𝛼 approaches infinity, per-formance approaches the naive INR-based demosaicking.

Table 6Enhancing Image Demosaicking with INR: Average PSNR and SSIM values for different demosaicking methods on the McM (500 × 500) dataset after 2000 it-erations and the Kodak (192 × 128) dataset after 10000 iterations with 𝛼 = 60.Bold indicates the highest values.
Method McM (500 × 500) Kodak (192 × 128) PSNR/SSIM PSNR/SSIM 
Nearest Neighbor 27.54/0.8594 25.11/0.7973 Bilinear 30.41/0.9276 26.61/0.8685 Bayer INRID 34.71/0.9348 31.33/0.9283
Malvar 33.62/0.9330 31.68/0.9420 Malvar INRID 35.31/0.9433 32.58/0.9449
Menon 33.91/0.9263 33.29/0.9571 Menon INRID 35.80/0.9438 33.74/0.9586
RSTCANet 40.06/0.9739 38.40/0.9839RSTCANet INRID 36.95/0.9501 38.38/0.9836 

in guiding the training process, the Bayer loss remains more dominant. When 𝛼 is below 1, which emphasizes the complementary loss more than the Bayer loss, performance degrades compared to the baseline (dotted line), providing no enhancement at all. However, when 𝛼 is greater than 1, INRID begins to enhance the original demosaicking methods, with the most significant improvements occurring when 𝛼 is within the range of 
(10,200). As 𝛼 increases further towards infinity, the complementary loss influence diminishes, and the model essentially reverts to the naive INR demosaicking approach discussed in the previous section. Based on these findings, we selected 𝛼 = 60, which yielded the best average improvements in both PSNR and SSIM.Boosting Demosaicking Performance: Table 6 highlights the im-pact of the INRID approach in improving traditional demosaicking tech-niques, specifically Malvar and Menon, using the SIREN architecture. The results are consistent across both the Kodak and McM datasets, where the INRID framework significantly boosts the performance, lead-ing to noticeable improvements in both PSNR and SSIM. For both tradi-tional demosaicking methods, Malvar and Menon, integrating the INRID approach results in visibly better reconstruction quality, particularly in challenging areas with fine details or high-frequency content, as illus-trated in Fig. 8.Basic demosaicking algorithms like nearest neighbor and bilinear in-terpolation are surpassed by even the naive INR demosaicking (Bayer INRID) introduced in the previous section. For these methods, incorpo-rating initial reconstruction degrades the enhancement.It is worth noting, however, that INRID has limitations. Once the initial demosaicking reconstruction reaches a certain level of accuracy, further improvement of a given method is limited. This is evident in the PSNR values for the Transformer-based demosaicking method RST-CANet, as seen in Table 6. However, for state-of-the-art methods, the INRID framework can still be valuable when addressing joint problems such as demosaicking combined with denoising or deblurring.
4.5. Joint demosaicking and denoising

While INRID may not directly enhance state-of-the-art demosaick-ing methods, like RSTCANet, it shows significant improvements when dealing with out-of-distribution data, such as images corrupted by noise. To demonstrate this robustness, we conducted experiments on the joint demosaicking and denoising task using the Kodak dataset resized to 
192 × 128. We introduced varying levels of Gaussian noise, with signal-to-noise ratios (SNRs) ranging from 10 dB to 40 dB, and then applied our INRID framework with RSTCANet as the initial demosaicking re-construction.We compared our approach against a baseline and two specialized methods for joint demosaicking and denoising. The first is a classi-cal method that builds upon the demosaicking technique of Farsiu et 
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Fig. 8. Enhancing Image Demosaicking with INR: Visual Comparison of Demosaicking Methods with and without INRID Enhancement (applied to McM image #1, 
500 × 500). The top row showcases traditional demosaicking results from Nearest Neighbor, Bilinear, Malvar, and Menon methods. The bottom row starts with the original image. The Bayer INRID approach overfits directly to the Bayer measurement without initial demosaicking, demonstrating a higher reconstruction quality compared to Nearest Neighbor and Bilinear methods. INRID significantly boosts the performance of the Malvar and Menon methods, particularly in high-frequency regions, such as along the stained glass edges (see red close-ups).

Table 7Joint Demosaicking and Denoising: Average PSNR and SSIM values for different iterations and SNR levels on the Kodak dataset (192 × 128). The parameters are: 𝛼 = 1, 𝛽 = 1, and 𝛾 = 0, with noise levels in SNR (dB). INRID uses initial reconstruction from RSTCANet.
Model Iterations PSNR / SSIM 

10 dB 20 dB 30 dB 40 dB 
Classical (HQ) - 23.68/0.5826 27.75/0.7934 30.20/0.9063 30.78/0.9348DeepDemosaick - 17.80/0.2985 28.83/0.8076 34.27/0.9489 35.70/0.9666RSTCANet - 17.51/0.2878 26.57/0.6620 34.31/0.9225 37.74/0.9777
INRID (RSTCANet init)

500 Iter 23.75/0.6352 29.19/0.8238 33.20/0.9247 33.94/0.9385 1000 Iter 23.73/0.6324 29.17/0.8250 34.67/0.9415 36.48/0.9661 2000 Iter 23.69/0.6309 29.11/0.8238 34.77/0.9425 37.63/0.9770 
al. [18], formulated via half-quadratic (HQ) approximation in a mul-tiplicative form [32] and solved by alternating minimization. While this approach can also integrate deblurring using a suitable kernel, we used a delta kernel here to focus solely on denoising and demosaick-ing. The second method is DeepDemosaick (introduced in Section 2), a deep convolutional residual network designed for joint demosaicking and denoising.Since RSTCANet already provides high-quality initial reconstruc-tions, we placed equal emphasis on the Bayer and complementary losses, setting 𝛼 = 1 and 𝛽 = 1. To showcase the denoising capabilities of INR, TV regularization was disabled (𝛾 = 0). To mitigate overfitting to noisy measurements, an early-stopping mechanism is employed for INRID, with training concluding after 500 to 2000 iterations.Table 7 presents a comparative analysis of the four methods across various noise levels. For heavy to moderate noise conditions (10–30 dB SNR), INRID consistently surpasses RSTCANet and outperforms both the classical and deep-learning-based approaches. While the classi-cal method delivers competitive results under severe noise conditions (10–20 dB SNR), its performance diminishes as noise levels decrease. Notably, DeepDemosaick closely matches INRID’s performance at 20 dB SNR.

At 20 dB SNR, INRID achieves a PSNR of 29.19 dB after 500 iter-ations, outperforming RSTCANet’s 26.57 dB and the classical method’s 27.75 dB. DeepDemosaick achieves 28.83 dB at this noise level and its vi-sual quality is comparable to INRID (see Fig. 9). Visually, RSTCANet and the classical method exhibit noticeable artifacts, whereas INRID effec-tively removes noise, especially around detailed regions such as window shutters.Under extreme noise conditions (10 dB SNR), the advantage of IN-RID becomes more pronounced, with a PSNR of 23.75 dB compared to RSTCANet’s 17.51 dB, representing a significant improvement. At 30 dB SNR, where noise levels are lower, the performance gap between IN-RID and its initial RSTCANet reconstruction narrows. Finally, at 40 dB SNR, where noise is minimal, RSTCANet achieves the highest PSNR (37.74 dB), and further refinement by INRID does not yield additional improvements. These results align with the conclusions drawn in the preceding section.
4.6. Joint demosaicking and deblurring

This experiment evaluates INRID’s impact on traditional and ad-vanced demosaicking methods when integrated with deblurring. Image 
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Fig. 9. Joint Demosaicking and Denoising: The first row presents the original image, its noisy counterpart (input SNR = 20 dB), and the output from the Classical method (HQ minimization). The second row showcases results from DeepDemosaick, RSTCANet, and RSTCANet INRID. The corresponding PSNR and SSIM results are shown in Table 7, 4th column. The image is from the Kodak dataset (resized to 192 × 128), with INRID parameters set to 𝛼 = 𝛽 = 1 and 𝛾 = 0.
Table 8Joint Demosaicking and Deblurring with Uniform Kernel: Average PSNR and SSIM for joint demo-saicking and deblurring on the Kodak dataset (resized to 192 × 128) with a uniform kernel (3 × 3), 50 dB noise after 10,000 iterations. + TV indicates that total variation with 𝛾 = 10−6 was added in the minimization problem (3). Significant improvements with INRID are particularly evident in meth-ods like RSTCANet and DeepDemosaick, with the best results highlighted in bold. Italicized entries indicate demosaicking results without deblurring.

Method Original INRID Enhancement 
𝛼 = 1 𝛼 = 1, +TV 𝛼 = 60 𝛼 = 60, +TV 

Nearest 25.71/0.7701 27.51/0.8232 27.56/0.8236 31.57/0.9113 31.58/0.9115Bilinear 25.06/0.7999 26.52/0.8420 26.52/0.8413 31.32/0.9120 31.36/0.9124Malvar 27.34/0.8293 30.84/0.9071 30.96/0.9120 32.40/0.9252 32.44/0.9257Menon 27.03/0.8159 31.19/0.9093 31.34/0.9144 32.67/0.9272 32.74/0.9285DeepDemosaick 27.29/0.8232 32.17/0.9198 32.27/0.9211 32.95/0.9289 33.01/0.9302RSTCANet 27.31/0.8251 33.38/0.9374 33.60/0.9409 33.24/0.9324 33.35/0.9344
Wiener Filtering 26.53/0.7959 — — — — IWFT 26.48/0.8330 — — — — D3Net 29.86/0.8736 — — — — HQ 31.66/0.9280 — — — — Bayer INRID 32.59/0.9241 — — — — 

quality degradation in such scenarios primarily arises from convolu-tion operations, which introduce blur during image acquisition. Since initial demosaicking guides INRID in interpolating missing data, the ef-fectiveness of deconvolution critically depends on the quality of this preliminary interpolation.Experiments were conducted on the Kodak dataset using Gaussian and uniform blur kernels with added noise at 50 dB to simulate the for-ward problem (1). Results are summarized in Tables 8 and 9 for 3 × 3kernels and in Tables 10 and 11 for 7×7 kernels. First, it shows that IN-RID enhancement of traditional techniques, such as Nearest neighbor, Bilinear interpolation and Malvar’s method, is suboptimal and outper-formed by INRID deblurring with Bayer measurements alone (Bayer INRID). The traditional approaches produce initial reconstructions that fail to adequately match the original image distribution, leading to in-sufficient deconvolution performance.In contrast, state-of-the-art methods, such as DeepDemosaick and RSTCANet, deliver more accurate initial demosaicking results, which, when enhanced with INRID, yield significantly improved deblurring performance. For instance, under Uniform 3×3 blur (Table 9), DeepDe-mosaick improves from 27.29 dB to 33.01 dB, and RSTCANet improves from 27.31 dB to 33.60 dB.

In most scenarios, choosing 𝛼 = 60 yields higher PSNR and SSIM values, as discussed in Section 4.4. However, when using RSTCANet initialization for images blurred with a smaller 3 × 3 kernel, the best results occur at 𝛼 = 1.The addition of TV regularization with 𝛾 = 10−6 provides a modest improvement in PSNR for all methods (except RSTCANet with Gaussian 
3 × 3 blur). Notably, for all tested scenarios, DeepDemosaick and RST-CANet paired with INRID outperform Bayer INRID, underscoring the importance of accurate initial demosaicking. For state-of-the-art meth-ods, the complementary loss in INRID plays a significant role in enhanc-ing reconstruction quality. Fig. 10 demonstrates how INRID integration performs demosaicking and deblurring effectively. Nevertheless, with larger blur kernels, the INRID enhancement of state-of-the-art demo-saicked methods is less significant compared to the Bayer INRID (see Table 10).We further compared INRID with other joint demosaicking and de-blurring methods. Specifically, we extended Iterative Wiener Filtering and Thresholding (IWFT) [33] to handle demosaicking and deblurring by incorporating formation model (1) into equation (1) in [33]. After integrating the new degradation model, the algorithm was modified accordingly, and the rest follows the original IWFT pipeline. The first 
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Table 9Joint Demosaicking and Deblurring with Gaussian Kernel: Average PSNR and SSIM for joint demo-saicking and deblurring on the Kodak dataset (resized to 192 × 128) with a Gaussian kernel (3 ×3), 50 dB noise after 10,000 iterations. + TV indicates that total variation with 𝛾 = 10−6 was added in the minimization problem (3). Significant improvements with INRID are particularly evident in methods like RSTCANet and DeepDemosaick, with the best results highlighted in bold. Italicized en-tries indicate demosaicking results without deblurring.

Method Original INRID Enhancement 
𝛼 = 1 𝛼 = 1, +TV 𝛼 = 60 𝛼 = 60, +TV 

Nearest 25.98/0.7877 27.57/0.8314 27.56/0.8311 31.54/0.9142 31.54/0.9145Bilinear 25.54/0.8218 26.77/0.8552 26.77/0.8548 31.31/0.9152 31.34/0.9155Malvar 28.48/0.8666 31.02/0.9125 31.03/0.9145 32.80/0.9319 32.85/0.9320Menon 28.24/0.8600 31.32/0.9141 31.33/0.9158 32.89/0.9331 32.90/0.9336DeepDemosaick 28.39/0.8567 32.22/0.9249 32.15/0.9234 33.15/0.9354 33.17/0.9359RSTCANet 28.64/0.8693 33.84/0.9440 33.66/0.9415 33.74/0.9401 33.71/0.9398
Wiener Filtering 28.13/0.8336 — — — — IWFT 28.18/0.8540 — — — — D3Net 31.06/0.8988 — — — — HQ 32.45/0.9399 — — — — Bayer INRID 33.07/0.9329 — — — — 

Table 10Joint Demosaicking and Deblurring with Uniform Kernel: Average PSNR and SSIM on the Kodak dataset (resized to 192×128) with a uniform kernel (7×7), 50 dB noise after 10,000 iterations. +TVindicates that total variation with 𝛾 = 10−6 was added in the minimization problem. Each row’s best PSNR/SSIM is in bold. Italicized entries indicate demosaicking results without deblurring.
Method Original INRID Enhancement 

𝛼 = 1 𝛼 = 1, +TV 𝛼 = 60 𝛼 = 60, +TV 
Nearest 23.32/0.5986 26.57/0.7627 26.61/0.7666 29.60/0.8450 29.72/0.8499Bilinear 22.60/0.6078 24.47/0.6804 24.47/0.6812 28.94/0.8274 28.96/0.8291Malvar 23.55/0.6084 27.87/0.8071 27.97/0.8125 29.94/0.8514 30.10/0.8574Menon 23.50/0.6065 29.25/0.8422 29.38/0.8474 30.12/0.8559 30.36/0.8637DeepDemosaick 23.55/0.6105 29.06/0.8329 28.87/0.8273 30.11/0.8545 30.31/0.8615RSTCANet 23.55/0.6096 30.16/0.8587 29.97/0.8548 30.14/0.8549 30.39/0.8623
Wiener Filtering 25.28/0.7129 — — — — IWFT 25.21/0.7114 — — — — D3Net 26.16/0.7266 — — — — HQ 30.01/0.8773 — — — — Bayer INRID 30.11/0.8540 — — — — 

Table 11Joint Demosaicking and Deblurring with Gaussian Kernel: Average PSNR and SSIM on the Kodak dataset (resized to 192 × 128) with a Gaussian kernel (7 × 7), 50 dB noise after 10,000 iterations. +TV indicates that total variation with 𝛾 = 10−6 was added in the minimization problem. Each row’s best PSNR/SSIM is in bold. Italicized entries indicate demosaicking results without deblurring.
Method Original INRID Enhancement 

𝛼 = 1 𝛼 = 1, +TV 𝛼 = 60 𝛼 = 60, +TV 
Nearest 24.03/0.6509 26.58/0.7752 26.43/0.7718 29.22/0.8420 29.29/0.8448Bilinear 23.24/0.6619 24.87/0.7180 24.87/0.7190 28.58/0.8275 28.64/0.8305Malvar 24.47/0.6734 27.58/0.8092 27.41/0.8048 29.35/0.8441 29.37/0.8465Menon 24.37/0.6681 28.79/0.8360 28.28/0.8227 29.46/0.8451 29.55/0.8489DeepDemosaick 24.41/0.6685 28.45/0.8248 27.84/0.8087 29.44/0.8456 29.49/0.8482RSTCANet 24.44/0.6716 29.50/0.8480 28.55/0.8249 29.49/0.8459 29.55/0.8488
Wiener Filtering 25.34/0.7487 — — — — IWFT 25.78/0.7909 — — — — D3Net 26.58/0.7334 — — — — HQ 29.06/0.8543 — — — — Bayer INRID 29.46/0.8445 — — — — 
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Fig. 10. Joint Demosaicking and Deblurring: Visual example of INRID’s performance on Kodak image #1 (192 × 128), degraded with 3 × 3 Gaussian blur and 50 dB noise. Corresponding PSNR, SSIM, and other metrics are in Table 9.
reconstruction step in IWFT corresponds to Wiener Filtering, a popular deconvolution technique. When applied to our test set, this method in-troduced ringing artifacts around edges due to its linear nature (clearly visible around the window shutters in Fig. 10).The complete IWFT algorithm then uses non-linear update steps to refine the Wiener-based reconstruction, effectively suppressing these artifacts and producing smoother images. However, IWFT tends to over-smooth images, leading to a slight reduction in PSNR (specifically in the case of uniform blur) despite the noticeable visual improvements.D3Net [9] is an end-to-end CNN developed for joint demosaick-ing, deblurring, and deringing. It surpasses IWFT in terms of PSNR but remains constrained by its lightweight architecture, which targets em-bedded devices with limited computational resources. HQ is a robust optimization framework for joint demosaicking and deblurring method introduced in Section 4.5. While HQ outperforms D3Net, it still does not reach the reconstruction quality offered by INRID methods.While INRID significantly enhances demosaicking and achieves supe-rior reconstruction quality compared to baseline and joint techniques, its computational cost remains a notable drawback. Fig. 11 illustrates the average PSNR and processing time for RSTCANet INRID over the Kodak 

dataset. The PSNR improves steadily up to approximately 11,000 itera-tions, after which it saturates, whereas the runtime continues to increase linearly, exceeding 100 seconds for 11,000 iterations on an NVIDIA L40S GPU. In contrast, traditional methods such as Wiener filtering, IWFT, and HQ are significantly faster, completing reconstruction in just a few seconds. D3Net achieves similar inference times to these methods but requires several minutes of pretraining for each specific blur and noise level. Despite the superior reconstruction quality of INRID-enhanced methods, their computational cost limits their practicality for scenarios demanding fast or resource-efficient processing, a limitation that will be further addressed in Section 5.
4.7. Real data

To further validate the reconstruction effectiveness of our INRID ap-proach, we tested it on real raw data captured from an LG Nexus 5 camera. The blur kernels (displayed in Fig. 1b) were estimated from calibration data.This experiment demonstrates the practical benefits of applying joint demosaicking and deblurring on actual image data. As shown in Fig. 12, 
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Fig. 11. Computational cost of RSTCANet-INRID with 𝛼 = 𝛽 = 1 and 𝛾 = 0 on the Kodak dataset (resized to 192 × 128). The figure shows the average PSNR (green dashed line) and runtime (blue solid line) as a function of the number of iterations, using the parameters described in Table 9. The PSNR improves steadily until saturating around 11,000 iterations, while the runtime increases linearly, reaching 2 minutes for 12,000 iterations on an NVIDIA L40S GPU.
the INRID framework, combined with prior information about the cam-era’s PSFs, yields a significant improvement over both the standard JPEG output and the advanced RSTCANet model.The raw Bayer data are seen in the second column of Fig. 12. The JPEG output (third column) exhibits considerable compression artifacts and blurring, especially in magnified areas. RSTCANet, shown in the fourth column, improves the reconstruction quality but still leaves some residual blurring and noise.In contrast, the final column illustrates the result of applying RST-CANet in conjunction with the INRID framework, leveraging PSF priors for all four RGGB channels in the raw Bayer data. By setting 𝛼 = 1 and 
𝛽 = 1, and enabling TV regularization with a value of 10−5, our ap-proach effectively removes noise and reduces blurring. This leads to a visually sharper and more accurate reconstruction, as highlighted by the red close-up in Fig. 12. Zoomed-in views of the green and blue bor-dered regions show further evidence of INRID’s ability in enhancing the baseline RSTCANet method.
5. Discussion and future work

The results demonstrate the significant potential of INRID in enhanc-ing traditional and state-of-the-art demosaicking methods. However, the computational cost associated with per-image training remains a notable limitation, particularly for large datasets or high-resolution im-ages. While this study focuses on reconstruction quality, addressing efficiency is a crucial challenge for expanding the practical utility of INRID, especially in real-time applications.Training INRID for each image is time-intensive. For example, pro-cessing a 192×128 image required approximately 96 seconds for 10,000 iterations on an NVIDIA L40s GPU, using around 1 GB of memory. This is orders of magnitude slower than traditional methods like Malvar or Menon, which complete within milliseconds for similar resolutions. Similarly, pre-trained models like RSTCANet offer real-time inference but fail to handle scenarios involving corrupted inputs, such as blurred or noisy data. In contrast, iterative joint demosaicking and deblurring methods process images within seconds but may not match INRID’s re-construction fidelity.To make INRID more practical, future efforts should aim to reduce its computational overhead. Promising approaches include multiresolu-tion hash encoding [34], which could cut training times to seconds, and dictionary-based representations like Neural Implicit Dictionary (NID) 

[35], which leverage pre-learned basis functions for efficient reconstruc-tions without a long per-image training.Scaling INRID to gigapixel-resolution images also presents chal-lenges due to the extensive training times required for basic architec-tures. Techniques such as tiling, which processes overlapping sections of an image with smaller MLPs, can enable parallel computation but may introduce stitching artifacts at boundaries. Refinements like KiloNeRF [36], which divides scenes into thousands of compact neural networks, and Multiscale Implicit Neural Representation (MINER) [37], which pro-cesses images hierarchically, offer promising solutions. Additionally, hy-brid frameworks like ACORN [38] dynamically allocate resources based on local signal complexity, optimizing both memory usage and training time for high-resolution applications.Beyond computational improvements, extending INRID to related tasks such as super-resolution and inpainting is a natural progression, given the similar challenge of reconstructing missing data. Integrating conditioning mechanisms, such as activation function modulations [39] or meta-learning paradigms [40], could further enhance generalization across diverse images while reducing per-image training requirements. This is particularly relevant for refining state-of-the-art methods in sce-narios with out-of-distribution data, such as blur or noise.Theoretical advancements addressing spectral bias [41]—a tendency of MLPs to prioritize low-frequency components over high-frequency details—are also essential. A structured dictionary perspective [40], where MLPs learn representations from a set of predefined basis func-tions, offers a promising direction to improve high-frequency detail re-construction and overall image fidelity.Ultimately, while INRID achieves superior reconstruction quality, its computational demands highlight clear challenges and opportunities for future work. Advances in training efficiency, scalability, and generaliza-tion will be crucial in realizing the broader applicability of INRID across diverse image reconstruction tasks while preserving its fidelity.
6. Conclusion

This paper introduced INRID, a novel framework leveraging Implicit Neural Representations for image demosaicking. By integrating Bayer loss to enforce fidelity to sensor data and complementary loss to utilize initial reconstructions, INRID significantly enhances traditional meth-ods like Malvar and Menon, achieving PSNR improvements of up to 2 dB. The framework also addresses limitations in deep learning-based methods, effectively correcting artifacts and demonstrating resilience in challenging scenarios, including blur and noise. Real-world validation on raw sensor data from mobile cameras further underscored INRID’s capability to produce sharper and more accurate reconstructions com-pared to standard outputs and advanced pipelines like RSTCANet.While INRID achieves state-of-the-art reconstruction fidelity, its computational demands highlight opportunities for further optimiza-tion. Future work will focus on improving efficiency through approaches such as multiresolution encoding and dictionary-based representations, and scaling to gigapixel images using advanced frameworks like MINER. Extending INRID to tasks like super-resolution and inpainting represents a promising direction, leveraging its capacity to adapt to diverse input characteristics while maintaining high fidelity.In conclusion, INRID demonstrates the potential of implicit neural representations to not only improve demosaicking quality but also tackle joint problems such as denoising and deblurring, paving the way for their integration into advanced image reconstruction pipelines.
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