D3Net: Joint Demosaicking, Deblurring and Deringing
Accepted to 25th International Conference on Pattern Recognition (ICPR2020)
Images acquired with standard digital cameras have Bayer patterns and suffer from lens blur. A demosaicking step is implemented in every digital camera, yet blur often remains unattended due to computational cost and instability of deblurring algorithms. Linear methods, which are computationally less demanding, produce ringing artifacts in deblurred images. Complex non-linear deblurring methods avoid artifacts, however their complexity imply offline application after camera demosaicking, which leads to sub-optimal performance. In this work, we propose a joint demosaicking deblurring and deringing network with a light-weight architecture inspired by the alternating direction method of multipliers. The proposed network has a transparent and clear interpretation compared to other black-box data driven approaches. We experimentally validate its superiority over state-of-the-art demosaicking methods with offline deblurring.